Интернет через Ethernet

         

Память ЕЕПРОМВыходит из строя



1. Память ЕЕПРОМ. Выходит из строя очень редко, для ремонта можно перепаять из ненужной аналогичной карточки (если таковая имеется).
2. Кроватка под boot-rom. Не ломается.
3. Центральный чип. Если проблема в нем - карточку (как и любой современный коммутатор) можно сразу списать в утиль. Чинить в принципе можно, но экономически не выгодно.
4. Кварцевый генератор. Иногда "стрясается", это можно определить по звуку, если потрясти карточку (не сильно!).
5. Преобразователь напряжения из 5 в 9 Вольт. Нужен для питания трансивера 8. В карточки "только ТР" не ставится.
6 и 7. Трансформаторная сборка для витой пары и коаксиала соответственно. При желании, схему можно взять

тут. Служит для согласования, и гальванической развязки. Вывести из строя можно только очень сильной наводкой или прямым попаданием молнии.
Однако, этот элемент очень важный - в любом случае именно через него поражающий разряд проникает внутрь устройства.
8. Трансивер. Работает на коаксиальный кабель. Самый уязвимый элемент сетевой карты, известны случаи выхода его из строя при наводке без подключенного кабеля (т.е. на голый разъем). Схема тут. Если вы делаете сеть на коаксиале, сразу ставьте кроватки для его быстрой замены. И запасайтесь этими микросхемами.
9. Разрядник. Развязывает экран коаксиала и "землю" шины компьютера. Никакой грозозащиты, вопреки расхожему мнению, из себя не представляет.
10 и 11. Разъемы витой пары и коаксиального кабеля. Выходят из строя очень редко.

При рассмотрении разводки платы отчетливо видно, что проводники от коаксиального разъема идут прямо на микросхему трансивера (8). И центральная жила, и оплетка. А ведь это даже не симметричная линия. Наводка в экране намного больше, чем в жиле. Понятно, что может случиться, если несколько сотен (или несколько тысяч) Вольт попадут на микросхему. В этом случае не спасет даже самое хорошее заземление, ведь рассчитан трансивер на амплитуду сигнала в 3 (ТРИ) Вольта.

Защита, конечно, помогает и в этом случае. Но уж слишком колоссальна сила наводки. Мне встречались APC ProtectNet с практически выгоревшей печатной платой. Элементы - в уголь. Защищаемое устройство - со сгоревшими дорожками. Терминаторы, приварившиеся к Т-коннектору...


Значительно лучше обстоят дела с витой парой.
Во-первых, это симметричная линия. Как было показано в предыдущих главах, в идеальном случае между проводниками витой пары наводка должна полностью отсутствовать. Увы, в реальности это не совсем так (повив неидеален).
Во-вторых, на рисунке легко заметить, что дорожки от разъема идут напрямик к трансформатору (6). Сам по себе трансформатор вывести из строя намного сложнее, чем трансивер.
Статистика защиты

Но в любом случае, есть обидная истина - 100% защиты от гроз не дает даже оптоволокно. Имеет смысл только статистический подход к проблемам защиты оборудования. В большой сети что-то все равно сгорит. Задача - минимизация потерь.
Мне пришлось "пережить" 3 грозовых лета с более-менее большими сетями (и еще несколько лет наблюдать ситуацию в чужих сетях). Вот краткие эмпирические выводы из этого:


Используемая технология
Вероятность выживания в течении сезона
"Тонкий коаксиал", RG-58
5%
"Тонкий коаксиал", RG-58, с грамотным заземлением


20%
"Тонкий коаксиал", RG-58, с заземлением и защитой типа ProtectNet от АРС
40%
Витая пара, 10baseT
50%
Экранированная витая пара, 10baseT, с заземлением экрана
70%
Экранированная витая пара, 10baseT, с защитой типа ProtectNet от АРС
80%
Экранированная витая пара, 10baseT, с заземлением экрана и защитой типа ProtectNet от АРС
90-95%
Думаю, никто не удивится, что первая большая сеть Екатеринбурга, построенная на коаксиале, оказалась последней. Сгоревшие за несколько минут 11 репитеров "закрыли" этот путь надолго. Это при всех удобствах RG-58 (дальнобойность, стойкость у погодным условиям, шинная топология, дешевизна).
Репитеры, конечно, тогда починили (но не все). И сеть еще поработала. Но таких новых линий уже никто не делал.
И через 2 года лето унесло жизнь 6 хабам из 120 установленных. Еще около 20 частично "подгорели". И это при том условии, что "весна, как обычно, наступила неожиданно".
В связи с бесперспективностью защиты коаксиальных линий передачи данных (по крайней мере в рамках серийного оборудования Ethernet), дальнейшее изложение будет посвящено защите оборудования, использующего симметричные линии (витую пару).
На сегодня в применении грозозащит превалирует два подхода:
Ставим на жилу витой пары неонку или разрядник из прибора с работы (свалки), авось пронесет. Используем схему АРС (только упрощенную), потому что буржуи давно так делают. Полученное устройство неплохо защищает, а лучше сделать будет слишком дорого.
Вообще, оба подхода имеют право на существования, и себя оправдывают. Но в условиях массового промышленного применения "защита на 95%" явное слабое звено.

Активное оборудование Ethernet



Активное оборудование Ethernet

Подойдем к проблеме "с обратной стороны". А точнее - рассмотрим классическую сетевую карту (схему можно взять

тут).



Электропитание и заземление.



Глава 4. Электропитание и заземление.

Делай как должно и пусть будет что будет...

В любой серьезной ЛВС кроме "слаботочной" части, есть силовая проводка питания активного оборудования. Для ее правильного построения и эксплуатации желательно знать терминологию и понимать основные принципы работы сети 220/380 Вольт. Хотя нужно учитывать, что строго говоря, это прерогатива людей, имеющих специальные знания и разрешения. А любые самостоятельные действия могут быть связаны с реальным риском для жизни.

Поэтому не помешает повторить еще раз: Все работы, связанные с прокладкой и обслуживанием электрических сетей, должны выполняться только квалифицированным электротехническим персоналом с соответствующей группой допуска электробезопасности!

Вторая часть данной главы связана с защитой сетей от различных электрических явлений - начиная с выходом из строя электросети, и закачивая грозами (атмосферными наводками). Хоть эти вопросы прямо не связаны с силовой проводкой, но их рассмотрение, так или иначе, приводит к общей (и ключевой) теме заземления.

Следующая особенность нижележащего материала - обширное цитирование ПУЭ (правила устройства электроустановок), которые безусловно являются главным документом, регламентирующим вопросы электрических сетей. Можно без преувеличения назвать их библией электрика. Разумеется, путаницы в ПУЭ заметно меньше, чем в 2-х тысячелетнем прототипе. И материи рассматриваются более земные. Тем не менее, вопросы электропитания достаточно сложны, и их лишнее толкование как минимум не помешает.

Дополнительная сложность заключается в том, что на часть ПУЭ есть новая, 7 редакция. И ее отличия от предыдущего варианта достаточно принципиальны (что случается в Российском законотворчестве не часто). Поэтому нужно ориентироваться на новую редакцию, и использовать ее как основу. Но при этом иметь в виду, что подавляющее большинство электросетей построено по старой (или очень старой) версии этого документа.

Краткие рекомендации:

При работе с электропроводкой желательно выполнять следующие рекомендации:


Работу с электричеством проводить в твердом уме, трезвом виде, и только вдвоем. Своевременная помощь друга может спасти жизнь. Всегда проверять отсутствие напряжения даже в "отключенной" сети. Отверткой, тестером - сделать несложно, а риск снижается заметно. Кроме этого, стоит позаботиться о себе на случай непредвиденного включения (практика показывает, что табличка "не включать, работают люди" действует не на всех адекватно). Самый простой способ защиты - занулить подводящие проводники чем-то надежным, и приличного сечения (мягкая медная проволока должна быть обязательным атрибутом комплекта инструментов монтажника). Тогда в случае случайного включения пострадают только предохранители. Оборотная сторона п. 2. Не включать автомат (рубильник, УЗО, пакетный выключатель), кем-то отключенный, при малейшем подозрении на проведение монтажных работ. Если возникла настоятельная необходимость (в нарушение всех норм) работать "под напряжением", это нужно делать только одной рукой, и стоя на хорошей "изолирующей" поверхности. Вторую руку лучше от греха подальше спрятать в карман. До самого недавнего времени cеть в квартирах выполнялась алюминиевым проводом. При необходимости присоединения другого провода (например для переноса розетки), никогда не скручивайте медь с алюминием - возникает гальваническая пара, металл в месте контакта активно разрушается, переходное сопротивление растет, возникает подгорание, что, в конце концов, может привести к пожару. Медный и алюминиевый проводники соединяются между собой через переходную колодку. При проводке питания для активного оборудования в сложных условиях чердаков и подвалов думайте о электробезопасности и пожаробезопасности. Например, Боже упаси на деревянную крышу вывести 220 В, да еще не в трубах или металлорукаве, а прямо витой парой на скобках. Пожарники могут пришибить на месте - и будут совершенно правы. Только 9-12 вольт, и с оглядкой. И последнее. Нужно заботиться о надежности источника питания. Тут не помешает грамотный проект, но - будем реалистами, делается он на практике очень редко. Очевидно и то, что качественный монтаж обязателен. Но кроме этого, будет неприятно, если питание коммутатора случайно попадет на неудачный, перегруженный автомат, или, например, сторож неожиданно начнет отключать именно этот этаж (дом, квартал на ночь или на день). Еще хуже, если линия помешает электрикам, хуже пожарникам - и нет питания, да еще и скандал, если слишком много норм нарушено. Такие "случайные проблемы" то же приходится учитывать…

Грозозащита оборудования.



Грозозащита оборудования.

Можно сказать, что три предыдущих параграфа были большим и важным вступлением к главному - защите магистрального и конечного оборудования от поражения атмосферными электрическими разрядами.

Ведь надежное заземление - не самоцель. Это главное и совершенно необходимое условие для сохранения оборудования и коммуникаций. Без заземления нет смысла разговаривать о грозозащите вообще - это просто не имеет смысла.



Вот основные моменты, повышающие шансы



Итоги

Вот основные моменты, повышающие шансы выживания сети. Если, конечно, у вас не оптика. :-)
Использование экранированной витой пары. Заземление (зануление) экрана. Установка грозозащит как со стороны оборудования провайдера, так и со стороны абонента. Использовать решения, наименее зависящие от пограничных свойств элементов. Желательно хотя бы раз в несколько лет обновлять грозозащиты... Использование кольцевых топологий для минимизации времени простоя.
Немного про экономику. Казалось бы, при современных ценах на хабы (от $25), вполне достаточно просто статистически вывести потери на приемлемый уровень. Даже если сгорит 20% - это не так страшно. Для большой сети в 100 хабов (это 300-500 человек) потеря за сезон 500 баксов несущественна. Что там, 1-2 бакса на человека.
Но реально, не так существенны потери от сгоревшего оборудования. Велики потери от простоя абонентов. И именно из-за них приходится выводить статистику на качественно другой уровень. Применять защиты, оптоволокно. Постоянный ремонт, плюс недовольство "почему так долго" обходится в такие деньги, что потери на сгоревших хабах становятся просто малозначимыми.
Поэтому, все же, будущее за оптоволокном, по крайней мере на магистралях. Но и про "медь" еще долго не забыть. Ведь подвержены наводкам и линии внутри домов, особенно если они идут по чердаку. Даже оптоволоконно-витопарный конвертер (FO-TP) нуждается в этом случае в защите. :-)

Явления при наводке на витую пару.



Рисунок 4.11. Явления при наводке на витую пару.


Результат будет все равно один. Через первичную обмотку трансформатора активного устройства будет течь ток (Iж), и вместе с тем эта же обмотка получит напряжение (Uп). Других заметных физических результатов не сможет добиться ни одна наводка.

Поражение активного устройство может пройти следующими способами:



Молниезащита кабелей.



Молниезащита кабелей.

Можно сформулировать основную задачу. Это, во-первых, защитить сеть от грозы (в основном атмосферных электрических разрядов), во-вторых, сделать это, не принеся вреда существующей электрической разводке (и подключенным к ней потребителям). При этом часто приходится решать "сопутствующую" задачу приведения в нормальное состояние заземления и устройства выравнивания потенциалов в реальной распределительной сети.

Основные понятия.

Если говорить о документах, то молниезащита должна соответствовать РД 34.21.122-87 "Инструкция по устройству молниезащиты зданий и сооружений" и ГОСТ Р 50571.18-2000, ГОСТ Р 50571.19-2000, ГОСТ Р 50571.20-2000.

Вот термины:

Прямой удар молнии - непосредственный контакт канала молнии с зданием или сооружением, сопровождающийся протеканием через него тока молнии. Вторичное проявление молнии - наведение потенциалов на металлических элементах конструкции, оборудования, в незамкнутых металлических контурах, вызванное близкими разрядами молнии и создающее опасность искрения внутри защищаемого объекта. Занос высокого потенциала - перенесение в защищаемое здание или сооружение по протяженным металлическим коммуникациям (подземным и наземным трубопроводам, кабелям и т.п.) электрических потенциалов, возникающих при прямых и близких ударах молнии и создающих опасность искрения внутри защищаемого объекта.

От прямого удара молнии защититься сложно и дорого. Над каждым кабелем громоотвод не поставить (хотя можно полностью перейти на оптоволокно с неметаллическим несущим тросом). Остается надеяться на ничтожную вероятность такого неприятного события. И мириться с шансом испарения кабеля и полного выгорания оконечного оборудования (вместе с защитами).

С другой стороны, занос высокого потенциала не слишком опасен, конечно, для жилого дома, а не порохового склада. Действительно, длительность наведенного молнией импульса - много менее секунды (в качестве тестового обычно принимают 60 миллисекунд, или 0,06 секунды). Сечение проводников витой пары - 0,4 мм. соответственно, для заноса большой энергий потребуется напряжение очень большой величины. Такое, к сожалению, бывает - так же как вполне реально прямое попадание молнии в крышу дома.


Повредить типичный силовой источник питания коротким высоковольтным всплеском малореально. Трансформатор его просто не пропустит дальше первичной обмотки. Да и у импульсного преобразователя есть достаточная защита.

В качестве примера можно привести силовую проводку в сельской местности - где кабеля подходят к зданию по воздуху, и конечно, подвергаются значительным наводкам во время гроз. Никакой особой защиты при этом обычно не предусматривается (кроме плавких предохранителей или искровых промежутков). Но случаи выхода из строя электроприборов не слишком распространены (хотя бывают чаще, чем в городе).

Система выравнивания потенциалов.

Таким образом наибольшую практическую опасность представляет вторичные проявления молнии (иначе говоря наводки). При этом поражающими факторами будут:

возникновение высокой разности потенциалов между токопроводящими частями сети; наведение высоких напряжений в длинных проводниках (кабелях)

Защитой от этих факторов служат, соответственно:

выравнивание потенциалов всех токопроводящих частей (в простейшем случае - соединение в одной точке), и малое сопротивление заземляющего контура; экранирование защищаемых кабелей.

Начнем с описания системы уравнивания потенциалов - как с того фундамента, без которого применение любых защитных устройств не даст положительного результата.

7.1.87. На вводе в здание должна быть выполнена система уравнивания потенциалов путем объединения следующих проводящих частей:

основной (магистральный) защитный проводник; основной (магистральный) заземляющий проводник или основной заземляющий зажим; стальные трубы коммуникаций зданий и между зданиями; металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования. Такие проводящие части должны быть соединены между собой на вводе в здание. Рекомендуется по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов.

7.1.88. К дополнительной системе уравнивания потенциалов должны быть подключены все доступные прикосновению открытые проводящие части стационарных электроустановок, сторонние проводящие части и нулевые защитные проводники всего электрооборудования (в том числе штепсельных розеток)...

Схематически заземление экрана кабеля, грозозащит и активного оборудования по новой редакции ПУЭ должно производиться следующим образом:


Основные понятия



Основные понятия

Если опустить вступление "библии электрика" (ПУЭ), то для понимания технологии заземления нужно обратиться (для начала) к Главе 1.7, которая так и называется "Заземление и защитные меры электробезопастности".

В п. 1.7.2. сказано:

Электроустановки в отношении мер электробезопасности разделяются на:

электроустановки выше 1 кВ в сетях с эффективно заземленной нейтралью (с большими токами замыкания на землю), ; электроустановки выше 1 кВ в сетях с изолированной нейтралью (с малыми токами замыкания на землю); электроустановки до 1 кВ с глухозаземленной нейтралью; электроустановки до 1 кВ с изолированной нейтралью.

В подавляющем большинстве жилых и офисных домов России используется глухозаземленная нейтраль. Пункт 1.7.4. гласит:

Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, через трансформаторы тока).

Термин не совсем понятный на первый взгляд - нейтраль и заземляющее устройство на каждом шагу в научно-популярной прессе не встречаются. Поэтому, ниже все непонятные места будут постепенно объяснены.

При описании остальных вариантов устройств электроустановок проще всего поступить как в одном из вариантов инструкции на Роллс-Ройс - "если автомобиль сломался, Ваш водитель наверняка знает, что нужно делать". По крайней мере схемы, отличные от глухозаземленной нейтрали, встречаются при строительстве домашних сетей немногим чаще, чем Роллс-Ройсы на улицах.

Введем немного терминов - так можно будет по крайней мере говорить на одном языке. Возможно, пункты будут казаться "вытащенными из контекста". Но ПУЭ не художественная литература, и такое раздельное использование должно быть вполне обоснованно - как применение отдельных статей УК. Впрочем, оригинал ПУЭ вполне доступен как в книжных магазинах, так и в сети - всегда можно обратиться к первоисточнику.

1.7.6. Заземлением какой-либо части электроустановки или другой установки называется преднамеренное электрическое соединение этой части с заземляющим устройством. 1.7.7. Защитным заземлением называется заземление частей электроустановки с целью обеспечения электробезопасности. 1.7.8. Рабочим заземлением называется заземление какой-либо точки токоведущих частей электроустановки, необходимое для обеспечения работы электроустановки. 1.7.9. Занулением в электроустановках напряжением до 1 кВ называется преднамеренное соединение частей электроустановки, нормально не находящихся под напряжением, с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной средней точкой источника в сетях постоянного тока. 1.7.12. Заземлителем называется проводник (электрод) или совокупность металлически соединенных между собой проводников (электродов), находящихся в соприкосновении с землей. 1.7.16. Заземляющим проводником называется проводник, соединяющий заземляемые части с заземлителем. 1.7.17. Защитным проводником (РЕ) в электроустановках называется проводник, применяемый для защиты от поражения людей и животных электрическим током. В электроустановках до 1 кВ защитный проводник, соединенный с глухозаземленной нейтралью генератора или трансформатора, называется нулевым защитным проводником. 1.7.18. Нулевым рабочим проводником (N) в электроустановках до 1 кВ называется проводник, используемый для питания электроприемников, соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в трехпроводных сетях постоянного тока. Совмещенным нулевым защитным и нулевым рабочим проводником (РЕN) в электроустановках до 1 кВ называется проводник, сочетающий функции нулевого защитного и нулевого рабочего проводников. В электроустановках до 1 кВ с глухозаземленной нейтралью нулевой рабочий проводник может выполнять функции нулевого защитного проводника.



Отличие защитного заземления и защитного "нуля"



Рисунок 4.5. Отличие защитного заземления и защитного "нуля"


Итак, прямо из терминов ПУЭ следует простой вывод. Различия между "землей" и "нулем" очень небольшие... На первый взгляд (сколько копий сломано на этом месте). По крайней мере, они обязательно должны быть соединены (или даже могут быть выполнены "в одном флаконе"). Вопрос только, где и как это сделано.

Попутно отметим п. 1.7.33.

Заземление или зануление электроустановок следует выполнять:

при напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока - во всех электроустановках (см. также 1.7.44 и 1.7.48); при номинальных напряжениях выше 42 В, но ниже 380 В переменного тока и выше 110 В, но ниже 440 В постоянного тока - только в помещениях с повышенной опасностью, особо опасных и в наружных установках.

Иначе говоря, заземлять или занулять устройство, подключенное к напряжению 220 вольт переменного тока совсем не обязательно. И в этом нет ничего особо удивительного - третьего провода в обычных советских розетках реально не наблюдается. Можно сказать, что вступающий на практике в свои права Евростандарт (или близкая к нему новая редакция ПУЭ) лучше, надежнее, и безопаснее. Но по старому ПУЭ у нас в стране жили десятки лет... И что особенно важно, дома строили целыми городами.

Однако, когда речь идет о заземлении, дело не только в напряжении питания. Хорошая иллюстрация этого - ВСН 59-88 (Госкомархитектуры) "Электрооборудование жилых и общественных зданий. Нормы проектирования" Выдержка из главы 15. Заземление (зануление) и защитные меры безопасности:

15.4. Для заземления (зануления) металлических корпусов бытовых кондиционеров воздуха, стационарных и переносных бытовых приборов класса I (не имеющих двойной или усиленной изоляции), бытовых электроприборов мощностью св. 1,3 кВт, корпусов трехфазных и однофазных электроплит, варочных котлов и другого теплового оборудования, а также металлических нетоковедущих частей технологического оборудования помещений с мокрыми процессами следует применять отдельный проводник сечением, равным фазному, прокладываемый от щита или щитка, к которому подключен данный электроприемник, а в линиях питающих медицинскую аппаратуру, - от ВРУ или ГРЩ здания. Этот проводник присоединяется к нулевому проводнику питающей сети. Использование для этой цели рабочего нулевого проводника запрещается.

Получается нормативный парадокс. Одним из видимых на бытовом уровне результатов стало комплектование стиральных машин "Вятка-автомат" моточком одножильного алюминиевого провода с требованием выполнить заземление (руками сертифицированного специалиста).

И еще один интересный момент:. 1.7.39. В электроустановках до 1 кВ с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока, а также с глухозаземленной средней точкой в трехпроводных сетях постоянного тока должно быть выполнено зануление. Применение в таких электроустановках заземления корпусов электроприемников без их зануления не допускается.

Практически это означает - хочешь "заземлить" - сначала "занули". Кстати, это имеет прямое отношение к знаменитому вопросу "забатареивания" - которое по совршенно непонятной причине ошибочно считается лучше зануления (заземления).



Параметры заземления



Параметры заземления

Следующий аспект, которые необходимо рассмотреть - числовые параметры заземления. Так как физически это не более чем проводник (или множество проводников), то главной его характеристикой будет сопротивление.

1.7.62. Сопротивление заземляющего устройства, к которому присоединены нейтрали генераторов или трансформаторов или выводы источника однофазного тока, в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока. Это сопротивление должно быть обеспечено с учетом использования естественных заземлителей, а также заземлителей повторных заземлений нулевого провода ВЛ до 1 кВ при количестве отходящих линий не менее двух. При этом сопротивление заземлителя, расположенного в непосредственной близости от нейтрали генератора или трансформатора или вывода источника однофазного тока, должно быть не более: 15, 30 и 60 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника трехфазного тока или 380, 220 и 127 В источника однофазного тока.

Для меньшего напряжения допустимо большее сопротивление. Это вполне понятно - первая цель заземления - обеспечить безопасность человека в классическом случае попадания "фазы" на корпус электроустановки. Чем меньше сопротивление, тем меньшая часть потенциала может оказаться "на корпусе" в случае аварии. Следовательно, в первую очередь нужно снижать опасность для более высокого напряжения.

Дополнительно нужно учитывать, что заземление служит и для нормальной работы предохранителей. Для этого необходимо, что бы линия при пробое "на корпус" существенно изменяла свойства (прежде всего сопротивление), иначе срабатывания не произойдет. Чем больше мощность электроустановки (и потребляемое напряжение), тем ниже ее рабочее сопротивление, и соответственно должно быть ниже сопротивление заземления (иначе при аварии предохранители не сработают от незначительного изменения суммарного сопротивления цепи).

Следующий нормируемый параметр - сечение проводников.

1.7.76. Заземляющие и нулевые защитные проводники в электроустановках до 1 кВ должны иметь размеры не менее приведенных в табл. 1.7.1 (см. также 1.7.96 и 1.7.104) .

Приводить всю таблицу не целесообразно, достаточно выдержки:

Для неизолированных медных минимальное сечение составляет 4 кв. мм, для алюминиевых - 6 кв. мм. Для изолированных, соответственно, 1,5 кв. мм и 2,5 кв. мм. Если заземляющие проводники идут в одном кабеле с силовой проводкой, их сечение может составлять 1 кв. мм для меди, и 2,5 кв. мм для алюминия.



Поражение устройства наводкой на витую пару.



Рисунок 4.12. Поражение устройства наводкой на витую пару.




Процессы, происходящие при наводке



Процессы, происходящие при наводке

Попробуем понять, что происходит в грозу. При этом нет смысла рисовать сложные схемы растекания наводки, и понимать механизмы распространения электромагнитных волн во влажном городском воздухе.



Сеть 220/380 Вольт.



Рисунок 4.1. Сеть 220/380 Вольт.


Три фазы (A, B, C) имеют между собой разницу в напряжении 380 вольт (если брать мгновенное значение), и каждая из фаз имеет потенциал 220 вольт относительно нуля (N). Соответственно, если необходимо получить однофазное питание, следует подключить один из проводов к фазе, а другой к нулю (обычно корпусу электрощитка).

И наоборот, питание от двух фаз практически никогда не используется. Более того, подключение устройства 220В к двум фазам скорее всего надолго выведет его из строя.

Если воспользоваться сетевым жаргоном, то можно сказать, что трехфазные линии - бэкбон силовой сети. Все магистральные каналы, вплоть до вводов в здания (этажи, отсеки, цеха) выполнены по трехфазной схеме. Так же запитаны и некоторые мощные потребители - асинхронные электродвигатели, крупные нагреватели, и т.п. Но для питания активного сетевого оборудования такой способ подключения фактически никогда не используется.

Однако на этом внешняя простота построения силовой сети заканчивается. Если фазные провода всегда одинаковые, то по типам заземления удобно различать следующие схемы: ТN-С, ТN-S, ТN-С-S, ТТ, IТ. Такая запись практически не применяется в "ПУЭ", да и редка в отечественной литературе. Однако, в связи с активной экспансией европейских норм, применяется на практике все чаще.

В этом типе записи первая буква определяет тип заземления источника питания. "Т" - означает прямое соединение нейтрали источника питания c землей, а в варианте "I" все токоведущие части изолированы от земли (последний вариант для России экзотичен).

Вторая буква показывает тип заземления открытых проводящих частей (например корпуса электрощитка): "Т" - непосредственная связь с землей, независимо от способа заземления источника питания; "N" - связь открытых проводящих частей с точкой заземления источника питания.

В последнем случае различают характер этой связи, точнее говоря, устройство нулевого защитного и нулевого рабочего проводников. В варианте "S" функции и нулевого рабочего (N) и нулевого защитного (PE) проводников обеспечиваются раздельными проводниками, "С" - используется один общий проводник (PEN).

Кроме этого, схемы могут быть комбинированными, например при ТN-С-S, когда внутреннее оборудование выполняется по схеме ТN-S, а наружное остается в варианте ТN-С.



Сетевая карта.



Рисунок 4.10. Сетевая карта.


Один из самых распространенная вариантов, Realtek 8029, $5-7 в любом компьютерном магазине. Устройство хабов и свитчей в смысле грозозащиты похоже на сетевую карту, поэтому рассматривать их отдельно не имеет особого смысла.

Рассмотрим (в свете грозоустойчивости) части этого адаптера.



Схема грозозащиты APCОписание


Представим, что на вход подан сигнал с амплитудой 5000 Вольт. Как поведет себя ограничитель напряжения? Время его реакции около 200 нс (5 МГц). Реально он, конечно, сработает - но пропустив заметную энергию высокочастотного импульса.

Газовый разрядник еще хуже. Его время срабатывания 1-5 мкс... Лучшие образцы - до 200-500 нс. Поэтому целесообразно применять его в качестве первичной защиты для "сброса" наводок большой мощности, либо для создания потенциальной "развязки" от "земли" (для исключения влияния последней на работу защиты).

Какие есть методы борьбы с явлением? Только резко уменьшить время срабатывания защитных элементов. Например, использованием быстродействующего варистора фирмы

EPCOS. Время срабатывания - менее 0,5 нс. Блестящий результат, обеспечивающий применение в грозозащитах по типовой схеме:



Схема грозозащиты с варистором.



Рисунок 4.14. Схема грозозащиты с варистором.


Минусы - стоимость (10 рублей варистор, а их нужно 4), и сравнительно низкая мощность (могут сгореть даже с дополнительным ограничителем напряжения или разрядником). Как не мала на первый взгляд стоимость в 40 рублей - реально это заметно удорожит итоговую стоимость изделия.

Следующий вариант несколько нетривиален. Диоды стандартной схемы АРС можно запереть дополнительным напряжением, и им же держать открытым ограничитель напряжения (на микротоке). В результате, имеем низкую емкость (диоды заперты), и малое время срабатывания при грозовой наводке, так как ограничитель напряжения уже открыт.

Остается застраховаться от разрушения диодов (или варисторов) при сверхмощных наводках плавкими предохранителями. Логика тут простая. Диоды должны сначала сгореть "в гайку", а уже потом рассыпаться. Пока они не рассыпались - линия в общем защищена. И до этого момента должны успеть сработать плавкие предохранители.

Конечно, простые плавкие предохранители имеют недостаток - перегорают безвозвратно. Самовосстанавливающиеся элементы дороги (около 10 рублей) и сильно гасят полезный сигнал. Поэтому нельзя выбрать слишком маломощные вставки. Но известно, что на практике диоды горят редко - поэтому с данным недостатком проще мириться.

Последний вариант грозозащиты - конструкция, содержащая приемо-передатчик (по сути, упрощенный 2-х портовый хаб, возможно не содержащий цифровой части). Такая защита способна спасать оборудование в самых тяжелых ситуациях, однако - ценой сравнительно высокой стоимости.

При современных ценах на коммутаторы и оптику ее масштабное использование едва ли целесообразно.

Еще одну особенность необходимо отметить отдельно. Широко распространен метод защиты конечного клиента методом "отключения". Т.е. в грозу абонент должен сам позаботиться о себе, и вытащить разъем из сетевой карты. Метод вполне надежный и логичный, но...

Что происходит при этом с проводом? Один из его концов становится разомкнутым. Т.е. исчезает то спасительное самовыравнивание потенциалов проводников витой пары. Сетевая карта, конечно, остается целой. А вот порт на хабе выгорает с большей вероятностью. Экономически представляется вполне целесообразным установить у всех клиентов грозозащиты. И клиенту проще, и порты целее.

Вариант с простыми "закоротками" (вынул кабель из карточки - закоротил специальным разъемом) годится только для небольших и дисциплинированных сетей. Коммерческим клиентам всего и не объяснишь...



Схема заземления.



Рисунок 4.6. Схема заземления.


Картина довольна необычная (для бытового восприятия). Буквально все, что есть в доме, должно быть заземлено на специальную шину. Поэтому может возникнуть вопрос - ведь жили без этого десятки лет, и все живы-здоровы (и слава Богу)? Зачем все так серьезно менять? Ответ простой - потребителей электричества становится больше, и они все мощнее. Соответственно, риски поражения вырастают.

Но зависимость безопасности и стоимости величина статистическая, и экономию никто не отменял. Поэтому слепо класть по периметру квартиры медную полосу приличного сечения (вместо плинтуса), заводя на нее все, вплоть до металлических ножек стула, не стоит. Как не стоит ходить в шубе летом, и постоянно носить мотоциклетный шлем. Это уже вопрос адекватности.

Так же в область ненаучного подхода стоит отнести самостоятельное рытье траншей под защитный контур (в городском доме кроме проблем это заведомо ничего не принесет). А для желающих все же испытать все прелести жизни - в первой главе ПУЭ есть нормативы на изготовление этого фундаментального сооружения (в совершено прямом смысле этого слова).

Подводя итоги вышесказанному, можно сделать следующие практические выводы:

Если Групповая сеть выполнена тремя проводами, для заземления/зануления можно использовать защитный ноль. Он, собственно, для того и придуман. Если Групповая сеть выполнена двумя проводами, желательно завести защитный нулевой провод от ближайшего щитка. Сечение провода должно быть более, чем фазного (точнее можно справиться в ПУЭ).

При двухпроводной сети нельзя заземлять корпус устройства на рабочий ноль. В крайнем случае, и соблюдая осторожность, можно так заземлить выводы грозозащиты с высоковольтной развязкой.

На этом можно было бы закончить изложение, если бы сеть располагалась в пределах одного здания (вернее, одной комнаты с единой шиной). Реально домашние сети имеют большие воздушные пролеты (и что самое неприятное, выполнены на приличной высоте). Поэтому нужно отдельно и подробно рассмотреть вопрос молниезащиты.



Термины по "ПУЭ".



Термины по "ПУЭ".

Как обычно, в начале главы - унылые термины. Однако без них в дальнейшем изложении (и тем более в ПУЭ) просто невозможно будет что-то понять.

7.1.3. Вводное устройство (ВУ) - совокупность конструкций, аппаратов и приборов, устанавливаемых на вводе питающей линии в здание или в его обособленную часть. Вводное устройство, включающее в себя также аппараты и приборы отходящих линий, называется вводно-распределительным (ВРУ).

7.1.4. Главный распределительный щит (ГРЩ) - распределительный щит, через который снабжается электроэнергией все здание или его обособленная часть. Роль ГРЩ может выполнять ВРУ или щит низкого напряжения подстанции.

7.1.5. Распределительный пункт (РП) - устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных электроприемников или их групп (электродвигателей, групповых щитков).

7.1.6. Групповой щиток - устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных групп светильников, штепсельных розеток и стационарных электроприемников.

7.1.7. Квартирный щиток - групповой щиток, установленный в квартире и предназначенный для присоединения сети, питающей светильники, штепсельные розетки и стационарные электроприемники квартиры.

7.1.8. Этажный распределительный щиток - щиток, установленный на этажах жилых домов и предназначенный для питания квартир или квартирных щитков.

7.1.9. Электрощитовое помещение - помещение, доступное только для обслуживающего квалифицированного персонала, в котором устанавливаются ВУ, ВРУ, ГРЩ и другие распределительные устройства.

7.1.10. Питающая сеть - сеть от распределительного устройства подстанции или ответвления от воздушных линий электропередачи до ВУ, ВРУ, ГРЩ. 7.1.11. Распределительная сеть - сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков.

7.1.12. Групповая сеть - сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников.



Типовая схема сети электропитания.



Рисунок 4.3. Типовая схема сети электропитания.


На рисунке наиболее распространенный на сегодня вариант ТN-С-S, позволяющая обеспечить достаточный уровень электробезопасности в сети без коренной реконструкции последней.

С внешнего ввода кабель заводится на главный рубильник (3 фазы), далее разводится по группам потребителей, каждая из которых имеет свой автомат выключения, и защиту в виде УЗО и ДПН.

Можно выделить следующие элементы силовой сети:

1. Автоматические выключатели. Устройства простые, и совмещают в себе выключатель и предохранитель. Бывают с электромагнитным, тепловым и комбинированным расцепителем.

В случае использования Электромагнитного расцепителя срабатывание происходит при прохождении через обмотку тока выше определенного значения. Такие автоматы защищают сеть от короткого замыкания. Тепловой расцепитель устроен проще - цепь разрывает биметаллическая пластина, изменяющая свою форму при нагревании, и служат для защиты от длительной перегрузки.

Надо заметить, что деление во многом условно, тем более сейчас распространены комбинированые типы устройств.

2. УЗО - устройство защитного отключения, принцип работы которого основан на втором законе Кирхгофа (алгебраическая сумма токов в каждом узле равна нулю). Так как при повреждении изоляции, прикосновении человека к токоведущему проводу и прочих угрожающих безопасности явлениях неизбежно появляются токи утечки, их можно отследить и отключить линию.



Устройство сети 220/380 Вольт



Устройство сети 220/380 Вольт

Надежное питание для сети передачи данных - важнейшее составляющее долгой и успешной работы. Наиболее распространенной в России является трехфазная сеть с напряжением 380 Вольт, и получаемая из нее однофазная с напряжением 220 Вольт. Классическую схему можно видеть на следующем рисунке:



Устройство защитного отключения.



Рисунок 4.4. Устройство защитного отключения.


Таким образом, УЗО можно и нужно рассматривать как простой и надежный способ защиты от поражения электрическим током. Но есть и отрицательные моменты в применении таких устройств.

Установка УЗО на линиях, питающих телекоммуникационное оборудование и вычислительную технику, может привести к перерыву связи, потере данных, и даже порче оборудования. Поэтому, пункт 7.1.81 ПУЭ прямо запрещает применение УЗО для электроприемников, отключение которых может привести к ситуациям, опасным для потребителей (классический пример - пожарная сигнализация).

Понятно, что нарушение связи можно так же рассматривать как чрезвычайную и недопустимую ситуацию. И стараться защищать питание узлов связи другими способами (хотя бывают случаи, в которых спорить с энергонадзором сложно).

3. Автомат защиты от перенапряжения (ДПН). Принцип работы прост - при превышении напряжения питающей сети выше порога (обычно 260 В), ДПН отключает потребителя от повышенного напряжения (или дает команду на отключение УЗО).

4. Кабеля, как без них. Для начала, сечение проводника можно определить исходя из тока - не более 10 Ампер на 1 кв. мм (точнее нужно смотреть в специальных таблицах). Ток можно рассчитать как I=P/220 для однофазной сети, где P - совокупная мощность потребителей.

Проводники могут быть однопроволочные и многопроволочные. Многопроволочные используются обычно в тех случаях, когда от требуется гибкость или мобильность (времянки, переноски, удлинители). Однопроволочные служат для неподвижных соединений, стационарной проводки. Многопроволочные дороже, имеют несколько больший диаметр, сложно крепятся в болтовых соединениях.

В качестве следующего важнейшего параметра можно назвать материал проводов. В любой ситуации рекомендуется медный кабель, алюминиевый использовать нежелательно. В отрасли компьютерных сетей и провайдинга просто нет задач, на которых сказывается дешевизна алюминиевых проводов.



В-третьих, наводка на вторичную



В-третьих, наводка на вторичную обмотку трансформаторной сборки.


Никакой защиты от этого в диапазоне частот Ethernet нет. Т.е. если на вход придет 20-30 Вольт с частотой 10 МГц, то наведенный ток вызовет напряжение 20-30 Вольт на вторичной обмотке, и далее в чипе активного устройства. Для последнего это верная смерть.

Вывод. Простые схемы (обычно клоны АРС) достаточно надежно спасают от пробоя на землю, но почти не помогают от индуктивной или емкостной наводки на вторичную обмотку трансформаторной сборки.

Вернемся к классической схеме грозозащиты, снятой с АРС:



Варианты ТN-С, ТN-S, ТN-С-S.



Рисунок 4.2. Варианты ТN-С, ТN-S, ТN-С-S.


Сложно сейчас сказать наверняка, почему в России нашла свое применение схема ТN-С. Возможно, сыграла свою роль низкая стоимость, а электробезопасность во времена СССР стояла далеко не на первом месте. Но на сегодня более 90% силовых сетей выполнены именно по этой схеме.

Повсеместное использование общего проводника (PEN) даже повлекло распространение термина "зануление" - именно так "приходится именовать" заземление в схеме ТN-С.

Но к этому вопросу мы вернемся ниже, уже на базе рекомендаций отечественного ПУЭ.

Элементная база силовой сети.

В общем случае реальная сеть может иметь весьма сложную и запутанную конфигурацию. Но классическая "упрощенная" схема выглядит таким образом:



Во-первых, это пробой на землю



Во-первых, это пробой на землю сетевой карты или коммутатора (Inп).


В этом случае напряжение Uп должно "пробить" трансформаторную сборку (которая выдерживает порядка 1,5 кВ), затем "вскрыть" несколько конденсаторов на плате, центральный чип устройства или (и) оставить следы разряда на печатной плате.

Встречаются ли такие повреждения на практике? Безусловно - около 3-5% случаев с использованием простых мер грозозащиты имеют именно такую клиническую картину. А без использования защитных средств - до трети устройств выходят из строя подобным образом.

Во-вторых, "просачивание" высокочастотной составляющей наводки через емкость трансформаторной сборки.

Скорее всего, это главный поражающий фактор. При этом трансформаторная сборка вполне может оставаться целой, невредимой, как и все элементы обвязки. Устройство будет выглядеть "совсем" как живое. Только не работать. Совсем как в анекдоте про автомобили и ремни безопасности.

Проверка простая - на выгоревший таким образом хаб перепаивается центральный чип - и он начинает нормально работать (многократно проверено).



Заземление экрана кабеля.



Рисунок 4.9. Заземление экрана кабеля.


С одной стороны выполняется "глухое" заземление. С другой - через гальваническую развязку (разрядник, кондернсатор, искровой промежуток). В случае простого заземления с обеих сторон в замкнутой электрической цепи между зданиями могут возникнуть нежелательные уравнивающие токи и/или паразитные наводки.

В идеале желательно провести заземление отдельным проводом приличного сечения до подвала дома и присоединить его там прямо к шине выравнивателя потенциалов. Однако практически достаточно использовать ближайший защитный ноль. При этом эффективность грозозащиты сети снижается, но не слишком значительно, только незначительно (скорее в теории, чем на практике) увеличивается вероятность повреждения электропотребителей в доме занесенным потенциалом.



Заземление экранов кабелей, грозозащит и активного оборудования по новой редакции ПУЭ.



Рисунок 4.7. Заземление экранов кабелей, грозозащит и активного оборудования по новой редакции ПУЭ.


В то время как старая редакция предусматривала такую схему:



Рисунок 4.8. Заземление экранов кабелей, грозозащит и активного оборудования в старой редакции ПУЭ.


Отличия, при всей внешней незначительности, достаточно принципиальны. Например, для эффективной грозозащиты активного оборудования желательно, что бы все потенциалы колебались вокруг единой "земли" (причем имеющей низкое сопротивление заземлителя).

Увы, слишком мало пока в России построено зданий по новому, более эффективному ПУЭ. И можно твердо сказать - "земли" в наших домах нет.

Что делать в этом случае? Вариантов два - переделывать всю сеть электроснабжения дома (нереальный вариант), либо грамотно использовать то, что есть в наличии (но при этом помнить, к чему надо стремиться).



Заземление кабелей и оборудования.



Заземление кабелей и оборудования.

С заземлением активного оборудования сложностей обычно не бывает. Если оно промышленной серии, то наверняка имеет для этого специальную клемму. Хуже с недорогими настольными моделями - в них понятия "земли" просто нет (и заземлять, соответственно, нечего). И больший риск повреждения сполна компенсируется низкой стоимостью.

Вопрос кабельной инфраструктуры значительно сложнее. Единственный элемент кабеля, который можно заземлить без потерь полезного сигнала - это экран. Целесообразно ли использовать такие кабеля для прокладок "воздушек"? Для ответа мне бы хотелось просто привести длинную цитату:

В 1995 году независимой лабораторией была проведена серия сравнительных испытаний экранированной и неэкранированной кабельных систем. Аналогичные тесты проводились также осенью 1997 года. Контролируемый отрезок кабеля длиной 10 метров прокладывался в защищенной от внешних помех эхопоглощающей камере. Одно окончание линии подключалось к сетевому концентратору 100Base-T, а второе - к сетевому адаптеру персонального компьютера. Контрольная часть кабеля подвергалась воздействию наводок напряженностью поля 3 В/м и 10 В/м в диапазоне частот от 30 МГц до 200 МГц. Были получены два существенных результата.

Во-первых, уровень наводок в неэкранированном кабеле категории 5 оказался большим в 5-10 раз, чем в экранированном при напряженности радиочастотного поля 3 В/м. Во-вторых, при отсутствии сетевого трафика, концентратор сети, выполненной на неэкранированном кабеле, показал на некоторых частотах загрузку сети более 80%. Уровень сигналов протокола 100Base-T на частотах свыше 60 МГц очень мал, но очень важен для восстановления формы сигнала. Однако, даже при наличии помех на частоте свыше 100 МГц неэкранированная система не выдержала испытаний. При этом отмечалось снижение скорости передачи данных на два порядка.

Экранированные кабельные системы выдержали все испытания, однако для их успешного функционирования чрезвычайно важно наличие эффективного заземления.

Тут нужно сделать важное замечание. В традиционных СКС заземление выполняется по всей длине линии - непрерывно от одного порта активного оборудования до другого (хотя по идее, должно быть предусмотрено заземление в одной точке). Нормально заземлить большую распределенную сеть чрезвычайно сложно, и большинство инсталляторов не использует экранированные кабеля принципиально.

В "домашних" сетях нужно говорить не о заземлении сети, а о заземлении отдельных линий. Т.е. можно представить каждую отдельную линию как неэкранированную витую пару, проложенную в металлической трубе (ведь цель экрана защита "воздушной" части линии).

Это сильно упрощает дело. Как следствие, использование экранированного кабеля более чем целесообразно. Но только при хорошем заземлении при вводе в здание. Желательно сделать это с двух сторон по следующему правилу:



Заземление в жилом доме



Заземление в жилом доме

В обычной "бытовой" ситуации пользователи электросети (т.е. жильцы) имеют дело только с Групповой сетью (7.1.12 ПУЭ. Групповая сеть - сеть от щитков и распределительных пунктов до светильников, штепсельных розеток и других электроприемников). Хотя в старых домах, где щитки установлены прямо в квартирах, им приходится сталкиваться с частью Распределительной сети (7.1.11 ПУЭ. Распределительная сеть - сеть от ВУ, ВРУ, ГРЩ до распределительных пунктов и щитков). Это желательно хорошо понимать, ведь часто "ноль" и "земля" отличаются только местом соединения с основными коммуникациями.

Из этого в ПУЭ сформулировано первое правило заземления:

7.1.36. Во всех зданиях линии групповой сети, прокладываемые от групповых, этажных и квартирных щитков до светильников общего освещения, штепсельных розеток и стационарных электроприемников, должны выполняться трехпроводными (фазный - L, нулевой рабочий - N и нулевой защитный - РЕ проводники). Не допускается объединение нулевых рабочих и нулевых защитных проводников различных групповых линий. Нулевой рабочий и нулевой защитный проводники не допускается подключать на щитках под общий контактный зажим.

Т.е. от этажного, квартирного или группового щитка нужно прокладывать 3 (три) провода, один из которых защитный нуль (совсем не земля). Что, впрочем, вовсе не мешает использовать ее для заземления компьютера, экрана кабеля, или "хвостика" грозозащиты. Вроде бы все просто, и не совсем понятно, зачем углубляться в такие сложности.

Можно посмотреть на свою домашнюю розетку... И с вероятностью около 80% не увидеть там третьего контакта. Чем отличается нулевой рабочий и нулевой защитный проводники? В щитке они соединяются на одной шине (пусть не в одной точке). Что будет, если использовать в данной ситуации рабочий ноль в качестве защитного?

Предполагать, что нерадивый электрик перепутает в щитке фазу и ноль, сложно. Хоть этим постоянно пугают пользователей, но ошибиться невозможно в любом состоянии (хотя бывают уникальные случаи). Однако "рабочий ноль" идет по многочисленным штробам, вероятно проходит через несколько распределительных коробочек (обычно небольшие, круглые, смонтированы в стене недалеко от потолка).


Перепутать фазу с нулем там уже намного проще (сам это делал не раз). А в результате на корпусе неправильно "заземленого" устройства окажется 220 вольт. Или еще проще - отгорит где-то в цепи контакт - и почти те же 220 пройдут на корпус через нагрузку электропотребителя (если это электроплита на 2-3 кВт, то мало не покажется).

Для функции защиты человека - прямо скажем, никуда не годная ситуация. Но для подключения заземления грозозащиты типа APC не фатальная, так как там установлена высоковольтная развязка. Впрочем, рекомендовать такой способ было бы однозначно неправильно с точки зрения безопасности. Хотя надо признать, что нарушается эта норма очень часто (и как правило без каких-либо неблагоприятных последствий).

Надо отметить, что грозозащитные возможности рабочего и защитного нуля примерно равны. Сопротивление (до соединительной шины) отличается незначительно, а это, пожалуй, главный фактор, влияющий на стекание атмосферных наводок.

Из дальнейшего текста ПУЭ можно заметить, что к нулевому защитному проводнику нужно присоединять буквально все, что есть в доме:

7.1.68. Во всех помещениях необходимо присоединять открытые проводящие части светильников общего освещения и стационарных электроприемников (электрических плит, кипятильников, бытовых кондиционеров, электрополотенец и т.п.) к нулевому защитному проводнику.

Вообще, это проще представить следующей иллюстрацией:


Заземление (зануление).



Заземление (зануление).

Говоря в общем, можно заметить, что великая и ужасная сила электричества давно описана, подсчитана, занесена в толстые таблицы. Нормативная база, определяющая пути синусоидальных электрических сигналах частоты 50 Гц способна ввергнуть любого неофита в ужас своим объемом. И, несмотря на это, любому завсегдатаю технических форумов давно известно - нет более скандального вопроса, чем заземление.

Масса противоречивых мнений на деле мало способствует установлению истины. Тем более, вопрос этот на самом деле серьезный, и требует более пристального рассмотрения.



Этот протокол даже претендовал на



10base-T4

Еще одна похожая идея - 10base-T4. Этот протокол даже претендовал на ieee 802.3ah. В него явно заложена техническая ассоциация с давно забытым стандартом 100base-T4, но выполнено все на существенно более высоком техническом уровне.

Передача ведется сразу по 4-м парам, причем независимо, по 2,5 мегабита по каждой паре. Дальность работы - до 4-х километров. Причем скорость может автоматически повышаться или понижаться.




Рисунок 5.13. 10base-T4



Технически нет никаких сложностей - если xDSL может легко передавать по одной паре 2,5 мегабита, то кто мешает 10base-T4 это делать сразу по 4 парам? Частота и кодирование похожи (или просто одинаковы). И расстояние для диапазона 600 кГц получается вплне обычным.
Тут уж впору задать вопрос - как создателям нашумевшего HomePNA удалось получить такие посредственные показатели для своего детища. Не иначе, оставляли нишу для своей же линейки xDSL. Ее то же надо продавать. Или как обычно - сделали что "попроще, и ценою подешевле"...
Российский производитель не остался в стороне. Правда способностей хватило только на простые кустарные переделки сетевых адаптеров на меньшую скорость и большую дальность.

Антенна FA-20 (модификация FA-16).



Рисунок 5.5. Антенна FA-20 (модификация FA-16).


Стоимость такого решения порядка $50-70. Основной недостаток - высокая стоимость (при среднем усилении) и хорошая "заметность" антенны на крыше. Достоинство - узкая диаграмма направленности (порядка 20 градусов)

Следующая антенна относится к типу "волновой канал", марка POLARIS-2450 (усиление 17 Дб).



Антенны



Антенны

Антенны - в отличии от кабелей и разъемов - существенно более тонкая материя. Каких только типов не придумали специалисты на "эфирное" столетие. Панельные, коллинеарные (всенаправленные), волновой канал, логопериодические, спиральные, параболические, вибраторные... Но подробное рассмотрение технических характеристик перечисленных устройств выходит далеко за рамки данного материала. Поэтому придется ограничиться только кратким обзором.

Если не учитывать конструктивные отличия, все антенны можно разделить на всенаправленные (Co-Linear), секторные, и узконаправленные. Их различия понятны из названия. На практике всенаправленные антенны используются для небольших базовых станций, рассчитанных на работу с несколькими (максимум несколькими десятками) точек. У них мал коэффициент усиления, недостаточная помехозащищенность... В общем, при сложной эфирной обстановке всенаправленные антенны фактически неработоспособны, и тем более, не годятся для связи между сегментами Ethernet-сетей.

Более мощные базовые станции строят из нескольких секторов (антенн, имеющих диаграмму направленности в 60-180 градусов. При этом соседние сектора устанавливаются на разные частотные диапазоны, и не мешают друг - другу. С той же целью часто практикуется совместная установка двух антенн в разной поляризации (вертикальной и горизонтальной).

Но понятно, что при строительстве домашних сетей наиболее удобны узконаправленные антенны. Причем чем уже диаграмма направленности, тем лучше (к сожалению, антенну на 2,4ГГц с диаграммой меньше 30 градусов сложно изготовить). Меньше помех принимается, и меньше излучается, что то же немаловажно - особенно при безлицензионном использовании.

Наибольшее распространение получили панельные антенны и "волновой канал". Они просты в изготовлении, недороги, и обладают неплохими характеристиками. Вот пример панельной антенны FA-20 (усиление 20 Дб).



Баночная антенна.



Рисунок 5.7. Баночная антенна.


В качестве серьезного средства связи данное устройства рассматривать сложно. Тем не менее, технические параметры "банки" вполне на уровне - 7-8 Дб усиления можно получить даже без особых расчетов конструкции.

Грозозащита.

Так как антенна обычно ставится на крыше, нужно особо выделить такое ее свойство, как грозозащитные свойства. Почти все современные типы антенн являются короткозамкнутыми по постоянному току. Это само по себе весьма надежное средство против атмосферного электричества, только нужно заботиться что бы крепеж антенны (или трубостойка) были надежно заземлены.

В случае использования антенн экзотического типа, самодельных, и т.п. не короткозамкнутых, нужно либо устанавливать их в негрозоопасных местах, либо применять отдельную газовую или четвертьволновую грозозащиту (последнее, по сути, замыкает фидер по постоянному току на землю).

Непрямая видимость.

При использовании беспроводной связи в локальных сетях (и для связи локальных сетей) обычно никто не утруждает себя расчетом возможности связи. Есть прямая видимость - все нормально. Нет - работать не будет (разве что в пределах нескольких комнат).

В принципе, это верно. Но из повседневной практики известно и другое - уверенный прием телевизионного сигнала часто возможен и без прямой видимости. Радиоволны отражаются от стен домов и других поверхностей, и этого может быть вполне достаточно для работы радио-Ethernet.

В наиболее новых устройствах беспроводной связи возможность работы "на отражениях" поддержана на уровне методов кодирования, поэтому работает вполне эффективно. Настолько, что продавцы оборудования говорят о возможности связи "в отсутствии прямой видимости". Отчасти это правда - но далеко не всегда. Причем достоверно предсказать результат без проведения испытаний невозможно.



Беспроводные сети.



Беспроводные сети.

Если вспомнить историю, то Ethernet идеологически начинался именно как "эфирная" радиосеть. Поэтому возвращение к истокам (хоть и в совершенно новом качестве) должно было когда-нибудь произойти. И показательно, что сегодня радиомодуль беспроводной связи становится такой же обычной принадлежностью компьютеров как, например, встроенный модем или сетевая карта.

Но если по логике работы беспроводные сети весьма похожи на Ethernet (по крайней мере в наиболее распространенных стандартах), то на физическом уровне отличия более чем заметны. Да это и понятно - свойства "воздушной" среды очень далеки от "медного" кабеля. Настолько, что успешное использование беспроводной широкополосной связи немыслимо без нескольких технологических инноваций, с изложения которых и нужно начать эту тему.



Беспроводные сетиАнтенны, кабеля и разъемы.



Беспроводные сети. Антенны, кабеля и разъемы.

Для работы радиоканала кроме качественного активного устройства потребуется пассивная часть - антенна и подводящий кабель (антенно-фидерный тракт). Причем часто их стоимость существенно превышает цену простого радиобриджа.

С кабелем все в общем понятно - чем меньше затухание (dB Loss), тем он лучше. Причем надо помнить, что затухание нужно смотреть именно на той частоте, на которой будет работать канал. В качестве демонстрации можно привести паспортные данные на следующие кабеля:



"БОКС".



Рисунок 5.12. "БОКС".


При разумной (менее $1000 за комплект) стоимости они пользуются небольшим спросом там, где нужен полностью "легальный" канал, но нельзя проложить провод. Решения на основе радио в России слишком сложно узаконить. По крайней мере для единичной линии лазерная связь обходится дешевле.

Однако там, где есть возможность обойтись без полной легальности, radio-ethernet безусловно и полностью выигрывает, так как стоит примерно в 10 раз дешевле.

В конце концов до "лазерной" технологии добрались китайские производители. Они убрали из лазерной "головки" практически всю электронику, оставив там только линзы и... Световод из удаленного блока. По сути, они сделали атмосферный преобразователь на обычный оптоволоконные медиаконвертер.

Это позволило резко снизить стоимость, поднять надежность и вандалоустойчивость конструкции. И наконец сделать атмосферные лазеры рентабельными для передачи данных на маленькие расстояния. Впрочем, пока это скорее теория из рекламных проспектов.

Реального оборудования подобного класса на рынке нет. Но есть шансы, что скоро появится.

Следующие устройства передачи данных по сути являются модификацией обычного Ethernet, и предназначены для решения каких-либо узких задач (как правило увеличения дальности работы).



Частоты ADSL.



Рисунок 5.1. Частоты ADSL.


Для того, что бы телефон и ADSL не мешали друг другу на одной линии используют сплиттер (POTS Splitter) - пассивное устройство которое разделяет частоты (либо ограничивает "верхний диапазон" перед телефонным аппаратом). Спектр частот ADSL обычно начинается с 25 кГц, поэтому полоса от 4 кГц до 25 кГц используется сплиттером в качестве переходной полосы.

В общем можно сказать, что ADSL не слишком удобна для организации связи между удаленными сегментами сетей Ethernet по следующим причинам:

По сути отсутствует подходящее оборудование (точка-точка или малопортовые DSLAM); Асимметричность передачи данных неудобна для равномерного межсегментного трафика; Относительно большие задержки заметны во многих широкополосных приложениях (например в играх).

Тем не менее, ADSL широко используется телефонными монополистами в качестве недорогой услуги подключения к сети Интернет, поэтому часто у "домашних сетей" просто нет выхода. Приходится использовать то, что доступно, а не то, что удобно.

SDSL.


Эта технология фактически явилась развитием HDSL (High Speed Digital Subscriber Line, высокоскоростная цифровая абонентская линия), который в свою очередь берет свое начало от стандарта ISDN-BA. Когда разработчики DSL пытались повысить тактовую частоту ISDN, оказалось, что даже простая 4-уровневая модуляция PAM позволяет работать на скоростях до 800 Кбит/с практически во всей зоне обслуживания телефонного оператора (3-5 км).

Были разработаны устройства, работающие по одной паре на скорости 784 Кбит/с, и 1,544 Мб/c по двум парам (скорость 1,5Мб важна для передачи распространенных с США потоков Т1). Дальнейшее развитие привело к появлению SDSL (симметричная скорость 2,3 Мб/с), для которой рекомендованы амплитудно-импульсная модуляция 2B1Q и более "дальнобойная" амплитудно-фазовая модуляция без несущей (CAP).

Технологий SDSL применяется в основном для связи точка-точка, используемое оборудование обычно одинаково для обоих сторон канала. Реже встречаются малопортовые DSLAM (например Lucent DSLMAX20 на 8-32 линии). Стоимость устройств SDSL несколько больше, чем ASDL.


Очевидно, что симметричные линии предназначены для связи удаленных сегментов корпоративных или "домашних" сетей, но не слишком удобны для конечного пользователя.

Часто считается, что SDSL не может функционировать на одной линии параллельно с телефоном. Но это не совсем верно. При скоростях более 700 Кб/с частоты SDSL и обычной телефонии разделены вполне достаточно для использования сплитеров (например Aviv16-SS) для нормальной совместной работы. Это заметно расширяет возможности применения данной технологии.

Последнее время SDSL все чаще заменяется ShDSL (Symmetric High bit-rate DSL), который отличается только типом кодировки (TC-PAM в отличии от 2B1Q или CAP). Этот стандарт на 10-15% более "дальнобойный", чем SDSL, но имеет и свой недостаток. Частотное уплотнение на ShDSL не работает, поэтому не редко модемы выпускаются со встроенными портами IP-телефонии.

К сожалению, из-за более высокой стоимости SDSL (ShDSL) "телефонные" операторы редко предлагают такую услугу даже в том случае, если место конечного пользователя занимают несколько небольших "домашних" сетей.

VDSL.

Технология VDSL является наиболее современной и "быстрой" технологией xDSL. Скорость передачи данных "нисходящего" потока составляет от 11 до 52 Мбит/с, "восходящего" - в пределах от 1,5 до 2,3 Мбит/с. На некоторых моделях оборудования доступен синхронный режим со скоростями до 26 Мб/с.

VDSL можно рассматривать как высокоскоростной ADSL, рассчитанный на небольшие расстояния (до 1 км.). Устройства просты, весьма недороги, и получают последнее время все большее распространение. на небольших кампусных сетях.

Использование VDSL по обычным телефонным кабелям возможно, но с серьезными ограничениями. Для этой технологии используются частоты мегагерцового диапазона, на который ТПП не рассчитан (у SDSL предел в сотни кГц). Поэтому две VDSL линии в одном кабеле вполне могут не работать из-за взаимных наводок.

И если в случае использования 2-3 линий может помочь перебор пар, то при более плотном заполнении вероятно полное или частичное прекращение работы любых DSL технологий.

С другой стороны как пользователи, так и производители оборудования перестали рассматривать VDSL как дорогую WAN-технологию. Он позиционируется скорее как удлинитель Ethernet, со всеми вытекающими ценообразовательными последствиями. Появляются комбинированные коммутаторы Ethenret - VDSL, в которых последний играет ту же роль, которую обычно предназначали оптоволокну.

Поэтому представляется, что VDSL имеет очень большие перспективы в сетях Ethernet-провайдеров. Однако их, все же, не нужно переоценивать. Дальность (и сама возможность) работы VDSL явно недостаточна для вытеснения как ADSL так и SDSL, и им предстоит достаточно мирное сосуществование в разных технических нишах.

В перспективе можно ожидать появление единого стандарта, сочетающего достоинства всех рассмотренных технологий. Предпосылки к этому уже есть сейчас, но все же практическое внедрение - дело не слишком близкого будущего.


Частоты HomePNA.



Рисунок 5.2. Частоты HomePNA.


Частоты HomePNA вынесены выше не только телефонии, но и xDSL, поэтому они все вместе могут использоваться в одной и той же медной паре (со сплитером). Скорость HomePNA стандарта 1.0 и 1.1 составляет 1 Мбит/c на полосе от 5,5МHz до 9.5МHz, и методе доступа к физической среде 802.3 CSMA/CD. Дальность работы - от 300 метров до 1 километра в зависимости от линии и оборудования.

Т.е. фактически это то же Ethernet, только более "дальнобойный" и помехоустойчивый. Для этого применяется многократная кодировка одиночного битового импульса, плюс запатентованный метод модуляции MLCM включает в себя цепь, способную адаптироваться к различным уровням помех, которые могут возникнуть в линии. В дополнение к этому, передающая цепь может изменять уровень сигнала в зависимости от условий работы.

Кстати, подобный механизм очень удобен для массовых инсталляций, например ADSL G.Lite поддерживает аналогичные функции.

Высокая помехоустойчивость позволяет HomePNA работать практически на любом типе абонентских линий, и главное, на любой их топологии (как это обычно и получается в домашней телефонной разводке). А ориентация на домашний сегмент рынка делал сетевые адаптеры и бриджи доступными по цене (от $20 сетевая карта и $80-100 бридж).

Развитием технологии HomePNA является версия 2.0, позволяющая осуществлять передачу данных со скоростью 10Мбит/c, и совместимая на уровне активного оборудования с предыдущей версией 1.0. При этом был использован частотный диапазон от 2 до 30 MГц и более эффективный 8-ми битный метод кодирования одного символа.

Дальнейшее развитие было вполне предсказуемым. Квартирное (по сути) решение попытались использовать операторы "последней мили". Появились многопортовые устройства HomePNA (например 12 портовый City Netek 1412M), предназначенные для оказания услуг передачи данных в многоквартирном доме или кампусе, а так же дальнобойные системы (до 1-1,5 км).

Но это было возможно только для стандарта 1.х. Более скоростной 2.0 давал слишком сильную помеху на соседние порты, и не было технической возможности объединить их в один конструктив. Таким образом технология разделилась на два параллельных направления.


Стандарт HomePNA 1.х получил развитие в топологии "звезда", где каждый пользователь подключается к отдельному порту коммутатора, и работает на скорости 1 Мбит/сек. Возможность подключения нескольких пользователей к одному порту по линии произвольной топологии обычно сохраняется, но как правило не используется из-за нестабильной работы подобной конфигурации.

Стандарт HomePNA 2.0 предназначен для топологии "шина", в которой полоса пропускания делиться между всеми пользователями. Их количество в теории может достигать 32, но на практике даже 3-4 абонента встречаются редко. Значительно чаще HomePNA 2.0 используется для соединения "точка-точка", как недорогая замена xDSL.

Можно сказать, что небольшую нишу в провайдинге HomePNA в России получил. Известны громкие (и не очень) проекты интернетизации жилых домов и офисных зданий с использованием телефонной проводки. Несколько менее были распространены попытки использовать "под Интернет" сети радиофикации. Однако заметных успехов на данном поприще замечено не было.

Рожденная для среднего американского коттеджа, технология так и не смогла закрепиться в провайдинге.

Главной причиной можно назвать нестабильную работу и отсутствие методов и способов контроля. Непредсказуемость в коммерческой передаче данных совершенно неприемлема, а с HomePNA была масса примеров необъяснимой работы на сверхдальние дистанции, и отказов на "идеальных" линиях.

Да и экономика внесла свою лепту. Проложить заново что одну пару, что две - разница в цене совсем небольшая. Использовать же для передачи данных "чужую" сеть в России организационно сложно, дорого, да и перспектива совместной работы через несколько лет представляется туманной (договора мало что значат, и велик риск вообще остаться без сети, у "разбитого корыта").

Но еще хуже оказалось то, что HomePNA плохо работает (или даже совсем не работает) в многопарных кабелях. Одно это могло сразу вычеркнуть HomePNA из списка операторской техники, да сыграла свою роль привлекательность дешевизны.

Но окончательно "звезда" HomePNA закатилась с распространением VDSL, который примерно в той же нище обеспечивает стабильное, предсказуемое качество - и с большей скоростью. Правда HomePNA продолжает выигрывать в цене благодаря наличию в линейке оборудования сетевых карт (чего нет в VDSL), но эта разница не велика в абсолютных цифрах ($30 за NIC HomePNA и $100 за бридж VDSL), и особого влияния на ситуацию не оказывает.

Более того, попытки ассоциации HomePNA выйти из кризиса с 100-мегабитной версией 3.0 судя по всему обречены на провал. Стандарт фактически никто не поддержал.

Таким образом рекомендовать HomePNA к активному применению нельзя, хотя в некоторых случаях вполне можно использовать для решения локальных вопросов.


Cisco LRE



Cisco LRE

Примерно во время появления HomePNA в недрах Cisco был разработан свой вариант удлинения Ethernet. Так как Cisco LRE (Long-Reach Ethernet) сразу позиционировался для сетей кампусов и офисных зданий, его параметры значительно превосходят HomePNA:

5 Мбит/с симметричный трафик, дальность до 1524 метров; 10 Мбит/с симметричный трафик, дальность до 1220 метров; 15 Мбит/с симметричный трафик, дальность до 1050 метров

Многопортовые устройства были выпущены на основе Catalyst 2900XL, что позволяет использовать всю мощь стандартных функции серии (QoS, VLAN) на LRE портах (а это само по себе не мало). Абонентские Cisco 575 LRE то же имели свой ADSL-прототип.

Техническое решение получилось красивым и мощным (во многом морально устаревший LRE превосходит современные системы VDSL, и тем более, HomePNA). В кампусах или офисных зданиях система нашла свое применение, и вполне успешно работает.

К сожалению, были и недостатки, которые помешали широкому распространению LRE:

Прежде всего высокая стоимость. Несколько сотен долларов за порт оказались слишком большой величиной для рынка. Отсутствие решения точка-точка (только коммутатор-точка). Это удобно для развернутой сети, но в то же время сильно поднимает стоимость начальной инсталляции. Полная неработоспособность в многопарных телефонных кабелях. Все вышеперечисленное привело к фактической стагнации LRE-проека, а распространение недорогого VDSL вообще сводит на нет шансы возрождения данной технологии в руках операторов Ethernet-сетей. Тем не менее, если случайно (или недорого) удалось получить Catalyst 2900XL LRE - его не стоит выкидывать, применение этой мощной системе найдется.



Диапазон частот



Диапазон частот

В большинстве стран распределение частот осуществляется по разрешению национальных телекоммуникационных служб. Причем по ныне действующему распределению радиочастот, зафиксированному Всемирной Административной Радио Конференцией (ВАРК), диапазоны частот 2400-2483,5 МГц и 5725-5875 МГц отведены для использования "высокочастотными установками, предназначенными для промышленных, научных и медицинских целей" (так называемые ISM-диапазоны - Industrial, Scientific, Medical).

В США постановлением FCC (Федеральной Комиссии по Коммуникациям) в 1986 году, и спустя несколько лет в Западной Европе, было официально разрешено безлицензионное использование ISM-диапазонов широкополосными средствами связи, и в частности устройствами Radio-Ethernet, при условии ограничения мощности передатчика предельной величиной в 100 мВт.

Это вызвало бурный рост беспроводных технологии (Wireless LAN). Создавались они по большей части для решения обеспечение мобильности пользователей на территории одного дома, или их группы (кампуса). Естественно, за использование частоты не взималась плата. Надо отметить, что в России Wireless LAN никогда не были популярны, а оборудование использовалось в основном для связи нескольких сетей между собой на территории района, города или даже области.

Но, к сожалению, совсем не так обстоит дело в России. Мало того, что тут требуется немалая плата за использование частоты, так и процедура регистрации чудовищно сложна и запутана. Масштаб данного изложения не позволяет привести процедуру целиком, но за сложность говорит стоимость работ, которая составляет тысячи (или даже десятки тысяч) долларов США. И пока нет особой надежды на изменение ситуации - если только в 2003 году был упрощен порядок регистрации для сетей, расположенных внутри дома. Продолжения ждать придется долго.

Однако при всем этом эффективные средства борьбы с пиратскими линиями связи просто отсутствуют. В результате в большинстве крупных городов диапазон 2,4 ГГц стал свободным "явочным порядком". Количество пиратских линий выросло на столько, что вынудило легальных операторов искать другие, свободные диапазоны (при этом деньги, потраченные на легализацию частот были, по сути, потеряны).

Да и как можно эффективно бороться с радиопиратами, когда стоимости активного оборудования опустилась ниже $100 (реквизиция никого не пугает), да еще чуть не каждый второй новый ноутбук имеет встроенный радиомодуль, а значит потенциальный "пират"?

Причем можно предположить, что "следующие" диапазоны постигнет та же участь. По мере снижения цен на оборудование диапазонов 3,4 и 5,2 ГГц количество пиратов будет быстро расти.Окончательный же результат предсказать пока сложно. Однако очевидно, что политика жесткого государственного регулирования провалилась, и не может эффективно защищать права "официальных" операторов.



Downgrade 10base-TX



Рисунок 5.14. Downgrade 10base-TX


На карточке просто перепаетвается кварц (на в 2 раза более медленный), и... все. Скорость 5 мегабит, дальность работы 300 метров.

К сожалению, подходят не все типы карт (только ISA от некоторых производителей), да и для преобразования скорости не обойтись без маршрутизатора с ISA-слотами.

Кроме показанных способов известные еще многие (или даже многие десятки) попыток улучшить Ethernet, однако с резким удешевлением xDSL, появлением HomePNA, VDSL, это движение практически затихло...

Коммерческой ценности, понятное дело, эти технологии на сегодня не представляют.

Кстати сказать, попытки "улучшения" или "упрощения" коснулись не только Ethernet. Затронуло это и xDSL. Как пример можно привести технологию AuDSL, которая хоть и представляет собой техническую шутку, но может навести на интересные мысли.

AuDSL (Audio Digital Subscriber Line) позволяет использовать старую звуковую карту для организации выделенной линии. Идея простая - вместо дорогого и специализированного DSP процессора - софт компьютера. Немного похоже на Win-модем.

Конечно, объем вычислительных операций пропорционален скорости. И на 2 мегабитах нужно очень быстро считать. Но ведь и винмодем еще 5 лет назад казался невозможным. А сейчас ставится в каждый третий-четвертый новый компьютер...

Прототипы AuDSL успешно соединяются на скорости 96 кбит/с на расстояние в несколько километров по обычной медной паре. В качестве компьютера используется PC с AMD K6-2-333 и звуковыми картами Ensoniq AudioPCI. Программный модем поглощает около 38% ресурсов центрального процессора.

Для реального использования, конечно, загрузка слишком велика. Да и xDSL стоит уже не так много. Но что-то мне подсказывает, что времена Win-DSL не за горами. ;-)



Смежные технологии передачи данныхОбзор.



Глава 5. Смежные технологии передачи данных. Обзор.

Не хлебом единым...

Как бы ни был хорош Ethernet как среда передачи данных, все необходимые для работы провайдера функции он может выполнять только при небольшом масштабе работ. При массовом оказании услуг находится масса мест, где удобнее применять иные технологии.

Это могут быть арендованные кабеля, отдаленные точки, непроходимые для самостоятельных прокладок расстояния между домами, и многое другое. Поэтому нужен хотя бы минимальный обзор технологий, с помощью которых можно эффективно связывать отдельные сегменты сетей.

Краткое описание технологий:

xDSL. Сокращение DSL расшифровывается как Digital Subscriber Line (цифровая абонентская линия). Технология позволяет значительно расширить полосу пропускания "классических" медных пар (телефонных линий). При этом возможны скорости от 32 Кбит/с до более чем 50 Мбит/с. Обычное расстояние, на котором возможна высокоскоростная связь, составляет 5-6 км. HomePNA. Предназначена для недорого соединения в сеть "поверх телефонной проводки" пользователей внутри одной квартиры или коттеджа. При этом обеспечиваются произвольная топология соединения кабелей и скорости от 1 Мбит/с (HomePNA 1.0 и 1.1) до 10 Мб (HomePNA 2.0) на расстояния порядка 300-500 метров. Для передачи данных используется диапазон частот 5,5 — 9,5 МГц. Радио-Ethernet. Название говорит само за себя - это передача данных через эфир на частотах гигагерцового диапазона (обычно для недорогих решений используется 2,4 ГГц). Скорости - от 1 Мб до 50 Мб (и возможно выше), расстояния до нескольких десятков километров. Линии кабельного телевидения (гибридные сети). Технология предназначена для передачи данных через коаксиальные сети КТВ, и использует отличные от ТВ-сигнала диапазоны. Решения данного типа могут быть весьма сложными, но проработанными до мелочей из-за широкого распространения в некоторых странах (например США). Связь по силовой проводке. Пожалуй, это самая новая из технологий, представленных в данном списке. Она позволяет (по крайней мере в теории) передавать данные по стандартной электрической проводке 220 Вольт на скорости до 11 Мб и на расстояния в сотни метров. Использование атмосферных лазеров. Передача сигналов в оптическом (как правило инфракрасном) диапазоне. Как правило решение позиционируется в России как не требующая лицензирования замена Радио-Ethernet. Однако у лазерной технологии есть и другие достоинства - высокая скорость (до гигабита), сложность перехвата данных, возможность организации сложных по топологии сетей. К сожалению, недостатков то же достаточно. Экзотические способы (различные модификации Ethernet, связь через com-порты, частные технологии, однопроводная связь, и т.п.). Тут комментарии излишни.

Таким образом видно, что у Ethernet масса конкурентов, заметно превосходящих его в частности. И эти достоинства надо использовать в полной мере. Подробный разбор технологий выходит далеко за рамки данной книги, однако обзорное описание просто необходимо, и оно приведено с следующих параграфах.



HomePNA и Cisco RLE.



HomePNA и Cisco RLE.

Если технология xDSL пришла в домашние сети со стороны "традиционных" операторов связи, то HomePNA, наоборот, первоначально была разработана даже не для офисного, а исключительно для домашнего, бытового применения.

История технологии в общем достаточно проста. В больших, двух-трех этажных американских коттеджах начало появляться по несколько компьютеров, которые хотелось с минимальными затратами связать в одну сеть. Из имеющейся инфраструктуры - силовая и телефонная проводка. Последнюю, как наиболее удобную, и решили использовать для создания ЛВС.

Отвечая на потребность рынка, в 1996 году несколько производителей телекоммуникационного оборудования создали альянс, получивший название Home Phoneline Networking Alliance. В 1998 году появился стандарт передачи данных по телефонным линиям, названный HomePNA.

Решение в теоретическом плане было выбрано достаточно очевидное.



Экзотические способы передачи данных.



Экзотические способы передачи данных.

Говоря в общем, в перечислении экзотических способов передачи данных можно легко дойти до азбуки Морзе или даже до сигнальных костров древних индейцев. Поэтому в данном параграфе будет описана лишь небольшая часть методов, которые в принципе (хоть и с некоторой натяжкой) можно применять в Ethenret-провайдинге.

Пожалуй, из нерассмотренного в предыдущих параграфах, наиболее близка к реальному провайдингу технология, использующая атмосферные лазеры.

Самое интересное, что в этой нише до сих пор соседствуют любительские решения и промышленные. Верный признак того, что технология еще не "устоялась", не все понятно как с производством, так и применением. Хотя последние варианты промышленных лазерных установок (судя по всему) могут решить большинство вопросов. Но обо всем по порядку.

Эксперименты с передачей данных при помощи лазерного луча начались еще в 60-х годах (причем в России), но прошли без успеха, и направление было надолго, и в общем обоснованно заброшено. С появлением новых технологий (и как следствие снижения цен на комплектующие) интерес к атмосферным лазерам появился вновь.

Как в России, так и зарубежом появились монстрообразные установки, предназначенные для работы на расстояние до нескольких километров с приемлемым уровнем надежности. Как классический пример можно привести серию "МОСТ" государственного Рязанского Приборостроительного Завода.



Методы передачи



Методы передачи

Для использования широкой полосы частот было разработано две принципиально различающихся между собой технологии. Это метод прямой последовательности (Direct Sequence Spread Spectrum - DSSS) и метод частотных скачков (Frequency Hopping Spread Spectrum - FHSS).

В режиме FHSS весь диапазон 2,4 ГГц используется как одна широкая полоса (с 79 подканалами). В режиме DSSS этот же диапазон разбит на несколько широких DSSS-каналов, так что до трех таких каналов может использоваться независимо и одновременно на одной территории. Номинальная скорость каждого канала 2 Мбит/с.

Метод DSSS позволяет достигать значительно большей производительности (2 Мбит/с на один канал, 6 Мбит/с на весь диапазон 2,4 ГГц), а кроме того, обеспечивают большую устойчивость к узкополосным помехам (выбором поддиапазона для передачи можно отстроиться от помех), и большую дальность связи.

FHSS выпускается значительно большим количеством компаний, она проще и дешевле, однако и пропускная способность ее ниже. Однако, достоинство FHSS-устройств состоит в том, что они, в отличие от DSSS, могут сохранять работоспособность в условиях широкополосных помех - например, создаваемых DSSS-передатчиками. Недостаток - сами они при этом мешают обычным узкополосным устройствам.



"МОСТ" 100/500.



Рисунок 5.11. "МОСТ" 100/500.


Скорость передачи данных - 4хЕ1 G.703, в более поздних вариантах появились модели под Fast Ethernet. Тип излучающего элемента - лазер, приемного элемента - pin фотодиод, излучаемая оптическая мощность - 500мВт. Плюс к этому дорогая и сложная многолинейная оптическая система.

Зарубежные производители выпускали целый рад в чем-то похожих моделей, применяя автонастройку лазера, точную оптику, и т.п. меры. Это позволило "вытянуть" линии до 5 км, но стоимость систем оказалась, мягко говоря, заоблачной. И это при весьма средней надежности, более годной для резервного, а не основного канала. Кстати, как ни странно, именно в резервировании по принципиально нетрадиционной технологии особо критичных проектов лазеры в основном и применялись.

В общем, подобные мощные и совершенные системы делаются и сейчас - но в очень ограниченном количестве, и интереса для Ethernet-провайдеров явно не представляют.

Второй волной были любительские системы. В России бум совпал с появлением "лазерных" указок, использовавших недорогие полупроводниковые излучатели (лазерами их назвать сложно). Известно даже несколько работающих на этом принципе любительских конструкций (так называемый удлинитель com-порта на лазере).

Кое-где даже дошло дело до создания любительских сетей, узлы которых были связаны атмосферными лазерами. Наиболее известен проект Ronja, который разработал Karel 'Clock' Kulhavy из Чехии.

Устройства имели простую компоновку (отдельные приемник и передатчик), сравнительно небольшую дальность работы... Но они стоили дешево и оказались вполне рабочим решением.

Фактически по той же схеме были налажены несколько небольших, но все же промышленных конструкций атмосферных лазеров. Как пример можно привести "БОКС" от НПК "Катарсис".



Однопроводные линии.



Однопроводные линии.

Волноводы однопроводных линий представляют собой металлический проводник, покрытый слоем диэлектрика. Конструкция показана на рисунке. Чтобы волновод линии с поверхностной волной имел низкие потери, он должен быть медный или биметаллическим (сталь с покрытием медью). Диэлектрический слой должен быть изготовлен из изоляционного материала с низкими потерями.



Рисунок 5.15. Однопроводные линии.


В электропроводящей линии с поверхностной волной электромагнитная энергия распространяется около волновода на всем его протяжении. В начале и на конце линии смонтированы устройства, называемые рупорами. Они исполняют две основные задачи - возбуждают электромагнитную энергию (волну) в линии и согласуют подходящий коаксиальный кабель с однопроводной линией.

Технические детали работы такой линии слишком сложны для данного изложения. Однако общий принцип понятен, а практическое использование в городских условиях все равно совершенно невозможно...

В заключение этого небольшого обзора остается добавить, что новые технологии передачи данных постоянно появляются и, наоборот, исчезают. Что-то становится популярным и часто используемым. Что-то проходит незамеченным. Такова судьба провайдинга - одной из самых быстроразвивающихся отраслей рынка.



Подключение через сети КТВ.



Подключение через сети КТВ.

Сети кабельного телевидения можно назвать широкополосным "пережитком" аналоговой эры. Полосе передачи TV-сигнала позавидует большинство СПД, да и физическая основа - коаксиальный кабель - едва ли не лучшая среда для высокоскоростной связи.

Но для КТВ достаточно односторонней передачи от головной станции к телевизору пользователя, и это существенно ограничивает возможности кабельных сетей для подключения пользователей к Интернет. Впрочем, еще 5-6 лет назад были попытки использовать кабельные сети для односторонней передачи данных, а обратный канал делать с помощью коммутируемого доступа (подобно подключению через спутниковый канал). Но сейчас эта технология устарела и невостребована.

Выход из положения был легко найден. По мере роста телевизионных сетей им самим понадобились средстава управления линейными устройствами. И обратный канал был заложен в нормы и активное оборудование. Российским ГОСТом для обратного канала отведена достаточно узкая полоса частот (5-30 МГц). Этого на сегодня вполне достаточно для нужд провайдеров, но расширение в рамках существующих систем невозможно, а их масштабная замена стоит недешево.

Типичная схема двухсторонней передачи данных через сети КТВ выглядит следующим образом:



POLARIS-2450-17.



Рисунок 5.6. POLARIS-2450-17.


Это наиболее дешевый ($20-40), и в общем, наименее качественный вариант. Но недорог, и дает вполне сносные результаты. Главное достоинство - такие антенны легко маскируются на крыше под телевизионные.

В заключение можно упомянуть еще один экзотический тип антенн, которые часто используются в кустарных сетях. Это "баночная" антенна.



Пример небольшой операторской базовой станции.



Рисунок 5.4. Пример небольшой операторской базовой станции.


Относительно невысокая стоимость, $800-1600 за клиентское устройство (CPE) и $7000-30000 за базовую станцию, высокая надежность и возможность предоставлять лини с гарантированными характеристиками, делают подобное оборудование привлекательным для построения городских сетей доступа, или в качестве дешевой альтернативы ЦРРЛ.

Остается добавить, что уже идет работа по принятию стандарта IEEE 802.16a, в основу которого и ляжет OFDM. Поэтому велика вероятность, что в недалеком будущем недорогое оборудование LAN-уровня получит большую часть достоинств сегодняшних "фирменных" технологий.

Что, в свою очередь, позволит строить надежные радиосети большего размера, и с большей скоростью обмена данными.



RG-8x doublescreen Параметр Значение



RG-8x doublescreen

Параметр Значение
Частота (мгц) 300 900 1800 2400
Затухание (дб/м) 0,24 0,42 0,64 0,76
Внешний диаметр (мм) 7,5
Диаметр центрального проводника (мм) 1,65

Belden H-1000

Параметр Значение
Частота (мгц) 300 900 1800 2400
Затухание (дб/м) 0,07 0,12 0,18 0,24
Внешний диаметр (мм) 10,3
Диаметр центрального проводника (мм) 2,5

Параметры привычного для локальных сетей RG58 приводить не имеет смысла - потери на нем превысят всякие допустимые пределы (вплоть до 5-8 Дб/метр). Поэтому при любом расстоянии до антенны имеет смысл использовать специальный высокочастотный кабель, тем более сейчас он не слишком дорог - от 0,5 до 2,5 долларов за метр.

Понятно, что чем длиннее кабель, тем больше в нем потери. Так, 20 метров RG-8x внесут затухание порядка 20 * 0,76 = 15,2 Дб. Что сравнимо с усилением очень приличной антенны. Кроме больших потерь на затухание, длинный кабель является хорошей антенной, которая собирает все помехи из эфира. Конечно, на входе в активное устройство стоит узкополосный фильтр, но и он может не справляться с мощной помехой. А установка дополнительного - минимум минус 3 Дб.

Таким образом вынос активного устройства как можно ближе к крыше можно рассматривать как насущную необходимость, при длине фидера более 30-40 метров связь скорее всего будет невозможна без усилителей и мощных антенн.

Разъемы

Следующий по значению элемент высокочастотного тракта - разъемы. В радиоезернет широко применяются N-type, SMA, TNC и отечественный РК-50. Несколько менее распространены BNC, UHF, F-type, и другие "фирменные" стандарты. Практически все типы имеют конструктивы под обжим, пайку, а так же разнообразные переходники и разветвители.

Затухание в правильно смонтированных разъемах невелико, и эквивалентно 1-2 метрам кабеля. Но даже небольшая грязь или влага способны его резко увеличить - до нескольких Децибел, и невозможности связи. Поэтому работа с разъемами не слишком сложна, но требует большой аккуратности.

Основная причина неисправности в условиях крыш и чердаков - попадание воды в разъем или даже кабель (если в нем в качестве диэлектрика использован воздушный зазор). Поэтому герметизация соединений является одним из самых важных этапов монтажа.



Сетевая карта для силовой сети.



Рисунок 5.8. Сетевая карта для силовой сети.


Отличие, пожалуй, только в разъеме. Он имеет надежный, солидный габарит и снабжен дополнительной винтовой фиксацией заменителя RJ-45.

Но не стоит торопиться и просто соединять компьютеры через розетки в соседних комнатах. С вероятностью 66% связи не будет, потому что для работы объединяемые в сеть устройства должны быть подключены на одну фазу.

Это сразу и серьезно ограничивает возможности технологии - попробуй разберись кто и как проводил проводку в доме лет эдак 20 назад. А схема разводки для России вещь хоть и положенная к существованию всеми должностными инструкциями, но обычно не имеющаяся в наличии.

Так что для создания сети придется потратить изрядное время на согласование с электриками и владельцами (балансодержателями) здания для нахождения места включения по следующей схеме:



Схема подключения абонента через сеть КТВ.



Рисунок 5.10. Схема подключения абонента через сеть КТВ.


Вполне работоспособная схема, только головная станция для передачи данных не дешевая ($5000-$20000), и скорость ограничена несколькими десятками мегабит "на всех".

Однако, на эту внешне безоблачную картину наложилась Российская реальность.

Сети КТВ появились и выросли очень похоже на современные "домашние" Ethernet-сети. Только примерно на 10 лет раньше.

Все начиналось переделки привычной "антенны на подъезд" (по сути пассивной сети с направленными частотно-зависимыми ответвителями) в инфраструктуру масштаба нескольких домов, или даже квартала. Технически это задача не слишком сложная, и сети росли как грибы.

Дальше шел обычный процесс укрупнения, повышения качества услуг, и т.п. Но важно отметить, что сети строились как правило без серьезного финансирования и единого проекта. Понятно, что о будущем никто не задумывался, оборудование и кабели использовались наиболее дешевые.

В результате на сегодня средняя сеть представляет собой головную станцию с поканальной обработкой сигналов и конвертированием каналов по частоте, которая выдает сигнал на широкополосные магистральные и домовые усилители с полосой пропускания 40-240 МГц без обратного канала. Далее на линиях установлены частотно-независимые магистральные ответвители и абонентские разветвители. Плюс ко всему менее чем среднее качество монтажа и материалов.

Очевидно, что использовать такую сеть для высокоскоростной передачи данных невозможно без коренной реконструкции, которая может вылиться в полную замену всей головной и магистральной части.

Не случайно из многочисленных попыток Ethernet-провайдеров использовать сети КТВ относительным успехом закончились только единичные проекты. Обычным итогом было разочарование в технологии и (или) убытки.

Но история на этом, понятное дело, не остановилась.

Началось внедрение широкополосных КТВ с обратным каналом 40-862 МГц в прямом направлении и 5-30 МГц - в обратном. Топология и архитектура этих сетей уже изначально проектировалась с учетом возможности передачи данных.


Однако в сетях HFPC ( Hybrid Fiber Passive Coax) по сути нет места классическим (работающим по коаксиальному кабелю) кабельным модемам. Если волокно уже приходит в дом или небольшую группу домов, дешевле его раздать отдельным кабелем по Ethernet, чем ставить дорогостоящую головную станцию и кабельные модемы.

Таким образом, более перспективная технология HFPC может легко выродиться в отдельные сети Ethernet, и отдельные - видео, объединенные только общей оболочкой оптического кабеля. Это, конечно, может дать некоторую экономию при строительстве сети, но оценить ее более чем в 20-30% нельзя. Тем более организационные сложности дальнейшей эксплуатации могут легко перекрыть полученный экономический эффект.

Подводя итог, можно сказать, что будущее гибридных сетей КТВ в передаче данных далеко не безоблачно. Относительно успешными получаются только реализации проектов в небольших городах (и Москве), где ТV-сеть строится по "социальному заказу" (и с политическим финансированием), а возможности подключения к Интернет достаются по сути "в нагрузку".

Разумеется есть некоторое число сетей, в которых оператор КТВ сам начал заниматься провайдингом, и смог неторопясь "подогнать" свои сети под нужны передачи данных. Однако, это скорее исключения, чем правило - примеров "заброшенных" проектов гораздо больше. Например в Екатеринбурге из 3 проектов подключения к Интернет через КТВ все 3 оказались убыточными и были заброшены.

В завершение, остается сказать несколько слов о некоторых удачных решениях. Тем более, их не так и много.

Наиболее распространенным на сегодня операторским оборудованием является Cisco uBR7200 (Universal Broadband Router). Это универсальный маршрутизатор с поддержкой передачи широкополосного сигнала. Маршрутизатор uBR7200 имеет, разумеется, много общего с "классическими" маршрутизаторами Cisco, в частности он поддерживает самые разнообразные интерфейсы для подключения устройства к локальным или глобальным сетям.



Главным отличием uBR7200 является поддержка кабельных модемов, т. е. наличие соответствующих плат расширения и совместимость с оконечными устройствами, поддерживающими стандарт DOCSIS. При этом "окно", необходимое для передачи данных, составляет 6 МГц (стандартная ширина полосы для одного телевизионного канала в Северной Америке). Или, согласно модификации стандарта Euro DOCSIS, 8 МГц — стандартная ширина полосы телеканала в Европе.

В этом окне данные могут передаваться со скоростью 30–42 Мбит/с в зависимости от типа модуляции. Доступная пропускная способность используется совместно всеми абонентами сети, пользующимися услугой. На практике каждый абонент может без особых проблем получить канал на 0,5-1,5 Мбит/с.

Передача обратного (upstream) трафика осуществляется в диапазоне 5–42 МГц, поддерживаемая скорость передачи в зависимости от метода модуляции сигнала достигает 0,5-10 Мбит/с (совокупно для всех абонентов).

Кабельные модемы устанавливаются как правило не у каждого пользователя (это для России слишком дорого), а "один на дом" или "один на подъезд", и сразу на магистраль. Далее разводка по дому делается Ethernet. Это позволяет решить сразу несколько проблем.

Во-первых, данный способ дешевле. Во-вторых, позволяет отложить на время дорогостоящую реконструкцию внутридомовых сетей, и в-третьих, обойти проблему ингресс-шума в обратном канале (так как самая "шумная" часть сети оказывается изолированной от обратного канала).


Схема разводки сети по силовой проводке.



Рисунок 5.9. Схема разводки сети по силовой проводке.


По такой схеме с активным оборудованием Corinex PowerNet были проведены натурные испытания в офисном здании постройки 80-х годов прошлого века, 7 этажей, 18 х 42 м. Точка подключения находилась приблизительно в геометрическом центре здания.

Наихудший линк выдал скорость 1,7 Мбит до подвала и некоторых комнат на 7 этаже, наилучший - по соседним комнатам 4 этажа - 7,2 Мбит. За суточный прогон трех точек падений линков не наблюдалось. От указанного в ТТХ (11 Мегабит на 300 метров) далековато, но для подачи Интернета по зданию более чем достаточно.

Однако сеть работала только в одном подъезде (т.е. на одном стояке силовой проводки). При переносе узла в подвал (в точку соединения нескольких силовых стояков) даже до 4-го этажа линия работала с трудом, а выше - связь отсутствовала в принципе.

На основе эксперимента можно сделать следующие выводы.

Вполне вероятно, что для подключения трех абонентов (если они попадут на разные фазы) понадобится шесть устройств PowerNet. Это сильно увеличивает стартовые расходы. Нужно ставить "узел" на каждый силовой стояк. Так как "через подвал" работать не будет. Причина скорее всего в том, что именно там находится основное разветвление проводки, и мощность сигнала серьезно ослабляется. Серьезный минус. Одного узла на 12-16 этажей скорее всего будет недостаточно. Запаса по скорости нет уже через 3-4 этажа, через 6-8 может и не подняться вообще. В эксперименте не проверена работа с существенной нагрузкой. Например, на какой скорости будут связываться узлы, если из будет 20-30 в одной сети.

Выходит, говорить о использовании PowerNet в "домашних сетях" пока рано. Дорого, непредсказуем результат. Сейчас работает, завтра сосед подключил стиральную машину 20-ти метровым удлинителем и...

Таким образом, на первый взгляд это очередное решение "масштаба коттеджа". Но есть некоторые факты, говорящие о высоком потенциале технологии в сфере предоставления провайдерских услуг.


Все рассмотренные устройства Corinex PowerNet достаточно умные. Управляются по SMNP весьма сложной и многофункциональной программой. Основное - автоматическое распознавание топологии сети, тестирование сети, мониторинг (с графиками и статистикой).

Присутствует защита. Невозможно прослушивать, и подключаться к сети без знание правильного пароля. Скорее всего, этот механизм похож на используемый в радио-ethernet. С другой стороны, администратор сети удаленно может изменять настройки безопасности (пароль) каждого клиента удаленно, а также создавать пользовательские сети со своими настройками безопасности.

Оператор может управлять подключением/отключением пользователя. Установка любого дополнительного Powerline устройства требует взаимодействия с оператором.

Так что вопрос по использованию PowerNet в "домашних сетях" пока нельзя считать окончательно закрытым. Технология в будущем может быть усовершенствована.

А пока - есть еще один вариант решения нестандартных ситуаций. К сожалению, на практике более чем достаточно случаев, когда нельзя проложить кабель ни за какие деньги, а связь нужна почти "любой ценой".


Шумоподобные сигналы



Шумоподобные сигналы

Основная идея передачи и приема шумоподобных сигналов весьма проста - это принудительное расширение спектра (Spread Spectrum, SS).

Любой (в том числе прямоугольный) сигнал можно представить как набор синусоидальных гармоник с разной амплитудой и частотой. Но при этом основная энергия импульса будет сосредоточена в спектральной полосе, соответствующей длительности передаваемого сигнала.

Ширина спектра = 1/tи, где tи - длительность импульса. Отсюда следует, что чем меньше длительность импульса, тем большую полосу займет сигнал. Но так сложно передать сигналы небольшой мощности.

Повысить надежность приема оказалось несложно. Достаточно внести в него избыточность, например числовую последовательность (часто называемую шумоподобным кодом или чипом). в этом случае энергия сигнала "размазывается" по всему спектру.



Шумоподобный сигнал.



Рисунок 5.3. Шумоподобный сигнал.


Для того, что бы можно было выделить чип из шума (который в эфире обязательно присутствует), используются специальные последовательности, обладающие свойствами автокорреляции. Т.е. при наложении на саму себя с некоторым сдвигом совпадение кода будет только в случае нулевого смещения. Наиболее известен в этом качестве 11-ти разрядный код Баркера (11100010010), прямой и инверсный вариант которого часто используется для передачи 1 и 0. Таким образом, передавая сигнал на уровне шума можно надежно его выделить и преобразовать в обычный узкополосный.

Нетрудно посчитать, что при информационной скорости в 1 Мб/с, чипы длительностью 1/11 мкс будут следовать на 11 Мчип/с, и ширина спектра составит 22 Мгц (частота соответствует 2/Т, где Т - длительность импульса). При этом надо помнить, что при помощи более сложных механизмов представления данных (например комплиментарных кодов) можно поднять сигнальную скорость в 2 и более раза.

Можно добавить, что при передаче сигналов в большинстве систем RadioEthernet используется обычная фазовая модуляция сигналов, не слишком отличающаяся по своей физической сути от методов, используемых в многих других системах, например xDSL.



Связь по силовой проводке.



Связь по силовой проводке.

Телефонная и силовая проводка - вот пожалуй все коммуникации, которые прокладывались в жилых домах еще несколько лет назад. Не удивительно, что к сетям 110/220 Вольт разработчики новых технологий уже давно присматривались на предмет передачи данных.

И в принципе, нельзя сказать, что безуспешно. Телеметрия, передача служебной информации - это все давно и успешно работает в электрическом хозяйстве. Вот только скорости при этом используются смешные по современным меркам - не более 9600 бит/с.

Для широкополосного доступа этого заведомо недостаточно. Большую скорость достичь очень сложно - все же силовой провод не коаксиал, и не витая пара - для высокочастотных сигналов он совершенно неприспособлен.

Однако, прогресс возможен и на таких сложных объектах. И уже несколько лет рекламные буклеты от производителей оборудования PowerNet не дают спокойно спать провайдерам домашних сетей. Поэтому рассмотрим технологию на следующем примере.

Примерно таким образом выглядит обычный сетевой адаптер для связи через силовую сеть:



Взаимодействие устройств



Взаимодействие устройств

Теоретические вопросы работы локальных сетей Radio Ethernet регламентированы стандартами семейстава IEEE 802.11. В нем определяется порядок организации беспроводных сетей на уровне доступа к среде передачи данных (МАС-уровень) и на физическом уровне (PHY-уровень).

Изначально стандарт IEEE 802.11 предполагал возможность передачи данных по радиоканалу на скорости 1 Мбит/с и опционально на скорости 2 Мбит/с. В более поздней версии - IEEE 802.11b, фактически являющейся дополнением к основному стандарту, определяется скорость передачи 1, 2, 5.5 и 11 Мбит/с. Следующие версии (a, g) еще более "подняли" скорость.

При взаимодействии устройств на MAC-уровне определяется два основных типа инфраструктуры сетей - Ad Hock и Infrastructure Mode. В первом случае возможен режим точка-точка (узлы непосредственно взаимодействуют друг с другом), во втором - взаимодействие идет через точку доступа (Access Point), который играет роль концентратора. При этом возможны два режима взаимодействия - BSS (Basic Service Set), все станции связываются только через точку доступа, и ESS (Extended Service Set), при которой узлы могут взаимодействовать друг с другом.

Для доступа к среде передачи (PHY-уровень) применяется знакомая по Ethenret система доступа с обнаружением несущей (CSMA/CA, Carrier Sense Multiple Access/Collision Avoidance), только вместо обнаружения коллизий используется технология их избегания. Перед отправкой кадра в эфир станция посылает специальное сообщение (RTS, Ready To Send), которое говорит о готовности начать передачу, а так же ее продолжительности и адресате.

Соответственно, другие узлы могут задержать передачу, кроме принимающего, который передает сигнал готовности (CTS, Clear to send). Успешная передача подтверждается кадром ACK, после чего все возобновляется снова и снова. Упрощенно говоря, коллизии между абонентами допускаются только при резервировании (в процессе "соревнования" за занятие канала), а передача данных начинается уже без возможности коллизий.


С другой стороны, активно развивается рынок беспроводного оборудования операторского класса. Это достаточно большой круг систем, включающих в себя MMDS, LMDS, OFDM (будущий 802.16а), а так же ряд фирменных технологий. Среди этого разнообразия оборудования, технологий, цен и возможностей разобраться бывает нелегко даже специалисту, не говоря уже о начинающих.

Попробуем прояснить ситуацию, которая сложилась на практике.

Группа IEEE 802.11.

В настоящий момент эта группа, безусловно, доминирует на рынке. Однако, сразу необходимо отметить, что данные стандарты изначально разрабатывалась (и продолжают разрабатываться) как технология локальных сетей внутри помещений.

Грубо говоря, устанавливая точку доступа 802.11, получаем концентратор (хаб) с характеристиками, несколько ухудшенными относительно его "проводных" аналогов. Таким образом, на одну точку пропускной способностью 11Mb/s (802.11b) для большинства приложений возможно подключить до 10-15 клиентов.

Это обстоятельство делает фактически невозможным применение подобного оборудования в сетях доступа масштаба города или хотя бы района. Несмотря на то, что подобные сети были построены во многих городах, услугу нельзя назвать массовой (или качественной).

Достойным "outdoor" применением оборудования 802.11b являются соединения точка-точка или разнос на 2-3 точки на расстояниях до 7-8 километров.

Приведем краткую таблицу характеристик для группы 802.11

Стандарт 802.11 802.11b 802.11a 802.11g
Частоты 2,4-2,483 ГГц 2,4-2,483 ГГц 5,15-5,25 ГГц
5,25-5,35 ГГц
5,725-5,850 ГГц
2,4-2,483 ГГц
Метод передачи DSSS,FHSS DSSS DSSS DSSS
Скорость 1,2Мб/с 1,2,5.5,
11Мб/с
6,9,12,18,
24,36,48,54Мб/с
6,9,12,18,
24,36,48,54Мб/с
Метод модуляции BPSK, QPSK BPSK, QPSK, CCK BPSK, QPSK BPSK, QPSK
Дальность связи До 50 км До 50 км До 40 км До 40 км
Необходимо отметить, что в описаниях любого оборудования максимальная дальность связи указывается для условий, близких к идеальным. Да еще, как правило, с использованием весьма дорогостоящего антенно-фидерного оборудования.



Крупные зарубежные операторы связи очень редко применяют данное оборудование в своих сетях в основном из-за отсутствия каких либо гарантированных характеристик канала, которые собственно и являются продаваемым товаром.

Наиболее распространенными реализациями данных стандартов является оборудование таких компаний как Cisco (aironet), Proxim (ORiNOCO), Micronet (SP), D-Link, Linksys и т.п.

MMDS и LMDS подобное оборудование

Исторически эта группа оборудования разрабатывалась как система беспроводного многоканального телевидения с переносом в высокочастотные спектры. Позже появились реализации, позволяющие наложить сеть стандарта DOCSIS v1.0 на существующую радиосеть (DOCSIS - стандарт цифровой передачи в кабельных сетях). Таким образом, все характеристики цифрового тракта соответствуют данному стандарту (Downstream до 38 Mbps, разделяемый, Upstream от 0,3 до 9Mbps, на каждого пользователя).

Наложение цифровой сети оставляет возможность транслировать определенное количество телевизионных каналов (в зависимости от общего спектра системы). Высокая мощность передатчика обеспечивает значительную зону покрытия (до 40км).

Основной недостаток подобного рода систем - чрезвычайно высокая стоимость. Инсталляция одной базовой станции потребует от $150000, не считая затрат на получение частотного разрешения.

С частотами так же существуют определенные проблемы, обусловленные шириной спектра, требуемого системой. Общая стоимость развертывания сети на средний город оценивается в $700000-1000000. Таких средств у отечественных операторов как правило нет.

Фирменные технологии

Отсутствие стандарта на беспроводные сети с гарантированными характеристиками канала привело к появлению большого числа фирменных разработок. Наиболее известными на текущий момент являются Tsunami (Proxim), Ultima3 (Wi-Lan), PacketWave(Aperto Networks) и Revolution (CompTek).


XDSL.



xDSL.

Исторически самым узким местом последней мили считалась абонентская телефонная линия (медная пара). Проблема увеличения скорости передачи данных на этой дистанции решалась разными способами, но в рамках одной общей концепции.

Рассмотрим теорию.

Традиционные модемы передают аналоговые сигналы в диапазоне частот, предназначенных для обычной телефонной связи (300 Гц - 3400 Гц). Практически все возможности увеличения скорости в этой полосе уже исчерпаны, можно сказать, что на стандарте V.90 достигнут теоретический предел (56к).

Дальнейшее развитие возможно только при использовании более высоких частот и цифровых сигналов. При этом данные не смогут пройти через аппаратуру телефонных станций, и линия может быть использован только на участке абонент - АТС (или на обычной выделенной медной паре). Это заметно снижает возможности применения DSL, но преимущества в скорости оказались слишком велики, и технология начала бурно развиваться.

Буквально за несколько было разработано несколько десятков видов DSL, отличающихся методами модуляции, используемых для кодирования данных. На сегодня можно выделить следующие основные стандарты:

ADSL - Asymmetric Digital Subscriber Line. Асимметричная цифровая абонентская линия. SDSL - Simple Digital Subscriber Line. Симметричная высокоскоростная цифровая абонентская линия, работающая по одной паре. VDSL - Very High Speed Digital Subscriber Line. Сверхвысокоскоростная цифровая абонентская линия.

Рассмотрим подробнее каждую из технологий.

ADSL.


Система была разработана в Северной Америке в середине 90-х годов. В то время считалось, что будет широко востребована услуга видео по запросу (причем в кодировке MPEG) для которой, собственно, ADSL и создавалась. Кроме несимметричной скорости под нужды потокового видео использовалась высоконадежная упреждающая коррекция ошибок. Из-за этого системы ADSL (особенно ранние) при передаче данных имеют большую задержку (до 20 мсек, что почти в 10 раз больше чем у систем SDSL или HDSL).

Но все же главным практическим признаком ADSL является асимметричность передачи данных. От сети к пользователю скорость значительно выше ("нисходящий" поток от 1,5 Мбит/с до 8 Мбит/с), чем в противоположном направлении ("восходящий" поток данных от 640 Кбит/с до 1,5 Мбит/с). Наибольшая скорость достигается на расстоянии до 3 км, а максимальное расстояние для устойчивой связи на минимальной скорости около 5-6 км.


Так же можно выделить разновидность G.Lite ADSL, которая представляет собой более дешёвый и простой в установке вариант технологии ADSL, обеспечивающий скорость "нисходящего" потока данных до 1,5 Мбит/с и "восходящего" до 512 Кбит/с (или по 256 Кбит/с в обоих направлениях).

Конечный пользователь обычно потребляет значительно больший трафик, чем отдает, поэтому данная технология весьма удобна для организации доступа в сеть Интернет. Так как это считается массовой услугой, устройства организации канала для оператора и абонента резко отличаются. На стороне провайдера устанавливается сложный многопортовый (сотни портов) мультиплексор-маршрутизатор (DSLAM), а на стороне пользователя - простейший модем.

В России широко используются DSLAM Cisco 6200 и Lucent Stinger. Стоят такие устройства несколько тысяч долларов, и практически неприменимы для нужд "домашних" сетей. Известны и примеры оборудования для организации каналов ADSL точка-точка (Pairgain MegabiModem 320/310), но особого распространения они не получили.

Нужно отметить, что большим достоинством ADSL является возможность работы по одной линии параллельно с телефоном (и не мешая друг другу). Принцип хорошо демонстрирует следующая диаграмма: