Иллюстрированный самоучитель по Mathematica



              

Системы класса Mathematica 2.x - часть 4


При этом система обеспечивала динамическую связь между ячейками документов в стиле электронных таблиц даже при решении символьных задач, что принципиально и выгодно отличало ее от других систем.

 

Система Mathematica 3

У разных фирм различны подходы к обозначению новых версий своих программных продуктов. MathSoft, Inc., к примеру, за какие-то пять лет породила добрый десяток новых версий популярной системы Mathcad — 3.0, 4.0, 5.0, Plus 5.0, 6.0, Plus 6.0, 7.0, Plus 7.0, 8.0, 8.0 PRO и даже Mathcad 2000 PRO/Premium. И почти каждый раз отмечала их новой цифрой, хотя революционными отличия этих версий друг от друга назвать трудно.

Фирма Wolfram Research, Inc. (разработчик систем Mathematica) явно относится к числу тех фирм, у которых малейший намек на изменение версии означает существенную ее переработку. В итоге версии Mathematica 3 и 4 на фоне более старых Mathematica 2.0, 2.1 и 2.2 выглядят кардинально новыми системами с новым превосходным пользовательским интерфейсом и обширными математическими возможностями.

В июле 1996 г. на бета-тестирование поступила система Mathematica 3. Вскоре (середина 1997 г.) она стала серийным продуктом, начались ее поставки на рынок. Был кардинально переработан пользовательский интерфейс системы, он вобрал в себя массу новинок — от раздельного вывода на экран деталей и панелей интерфейса до мощной и прекрасно реализованной справочной системы. Устранен недостаток предшествующих версий — небольшое число примеров в справочной системе. Все примеры стали «живыми» — их в любой момент можно переиначить на свой лад и перенести в свои документы.

Продолжая линию развития универсального ядра системы, фирма Wolfram обеспечила применение этой системы на целом ряде операционных систем — Windows 95, Windows NT, Macintosh, Power Macintosh, SunOS, Solaris, HP-UX, SGI, Linux и др. Это делает систему доступной самым различным категориям пользователей и позволяет распределять решение математических задач любой сложности по оптимальным для этого компьютерным платформам.




Содержание  Назад  Вперед