Иллюстрированный самоучитель по Mathematica


              

показывает применение функции OrientGraph для


Рисунок 11.11 (сверху) показывает применение функции OrientGraph для построения ориентированного графа, который представляется стрелками. Там же (снизу) показано применение функции ShowLabeledGraph для построения графа с маркированными числами вершинами. Напомним, что функция ShowGraph позволяет наблюдать графы без маркировки вершин.



Рис. 11.11. Построение графов — ориентированного (сверху) и с маркированными вершинами (снизу)

Построение широко используемой в теории графов диаграммы Хассе (Hasse) иллюстрирует рис. 11.12.

Алгоритмическая теория графов

AllPairsShor test Path

BipartiteMatchin

Cofactor

Dijkstra FindSet GraphPower
InitializeUnionFind Maxima IMatching MaximumAntichain
MaximumSpanningTree MinimumChainPartition MinimumSpanningTree
NetworkFlowEdges Networks' low NumberOfSpanningTrees
PathConditionGraph PlanarQ Shortest PathSpanningTree
ShortestPath StableMarriage UnionSet
Рисунок 11.13 показывает действие функции MinimumSpanningTree с выводом графа с метками узловых точек.



Риc. 11.12. Построение диаграммы Хассе



Риc. 11.13. Пример применения функции MinimumSpanningTree

В целом следует отметить, что набор функций в области создания, визуализации и теории графов весьма представителен, так что специалисты в области графов могут найти в этом наборе как типовые, так и уникальные средства.



Содержание  Назад  Вперед