Иллюстрированный самоучитель по Mathematica


              

gives all subsets of set


?KSubsets

KSubsets[l, k] gives all subsets of set 1 containing exactly k

elements, ordered lexicographically.

KSubsets[{l, 2, 3, 4, 5}, 2]

{{1, 2}, {1, 3), {1, 4}, {1, 5}, {2, 3), {2, 4}, {2, 5}, {3, 4}, {3, 5}, (4, 5}}

<< DiscreteMath`Combinatorica`

MinimumChangePermutations[{1,2,3}]

{{1, 2, 3}, {2, 1, 3}, {3, 1, 2}, {1, 3, 2}, {2, 3, 1}, {3, 2, 1}}

Map[RankPermutation, Permutations[{1,2,3,4}]]

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}

InversePermutation[{4,8,5,2,1,3,7,6}]

(5, 4, 6, 1, 3, 8, 7, 2}

Polya[Table[ RotateRight[Range[8],i], {i,8}], m]

1/8 (4m+2m2 +m4 +m8)

Table[NthSubset[n,a,b,c,d], {n,0,15}]

{{}, {a}, {b}, {a, b}, {c}, {a, c}, {b, c}, {a, b, c}, {d}, (a, d}, {b, d}, {a, b, d}, {c, d}, {a, c, d}, {b, c, d}, {a, b, c, d}}

Вторая группа функций комбинаторики представлена следующими функциями.

Функции разделения, композиции и картин Янга

CatalanNumber

Compositions

ConstructTableau

DeleteFromTableau

DurfeeSquare

EncroachingListSet

FerrersDiagram

FirstLexicographicTableau

. Insert IntoTableau

LastLexicographicTableau

Longest IncreasingSubsequence

NextComposition

Next Part it ion

NextTableau

NumberOf Compos it ions

NumberOf Partitions

NumberOf Tableaux

PartitionQ

Partitions

RandomComposition

RandomPartition

RandomTableau

TableauClasses

TableauQ

TableauxToPermutation

Tableaux

TransposePartition

TransposeTableau

Ha рис. 11.6 показано несколько примеров работы с некоторыми из этих функций.



Рис. 11.6. Примеры работы с функциями разделения, композиции и картин Янга

Этих примеров достаточно, чтобы заинтересованный читатель по их образцу и подобию изучил свойства и возможности нужных ему функций комбинаторики.



Содержание  Назад  Вперед