Иллюстрированный самоучитель по Mathematica



              

Численные данные - часть 3


Примеры использования функции BaseForm:

BaseForm[87,2]

10101112

BaseForm[305839326,16]

123abcde16

В дальнейшем мы будем использовать только десятичные числа.

Вещественные числа

Численные данные могут быть представлены также десятичными вещественными числами, которые могут иметь различную форму, например 123.456, 1.23456 10^2,12345.6 10^-2 и т. д. В общем случае они содержат мантиссу с целой и дробной частями и порядок, вводимый как степень числа 10. Как правило, вещественные числа в системах символьной математики могут иметь мантиссу с любым, но конечным числом знаков. Пробел между мантиссой и порядком эквивалентен знаку умножения *:

23.456*10^100

2.345бх10^101

10^-100

1/

100000000000000000000000000000

0000000000000000000000000000

0000000000000000000000000000000000000000000

10.^-100

1.x 10^-100

Как принято в большинстве языков программирования, целая часть мантиссы отделяется от дробной части точкой, а не запятой.

Mathematica производит операции с числами изначально как с целыми. Однако установка значка разделительной точки означает, что число должно рассматриваться как вещественное. Например, 1 — целое число, но 1. — уже вещественное число. Для представления выражения ехрг в форме вещественного числа используется функция N [ехрг] или N [ехрг, число_цифр_результата].

Примеры:

1/3

1/3

1./3 .

0.333333

N[1/3]

0.333333

N[2*Pi,50]

6.283185307179586476925286766559005768394338

Вещественные числа всегда имеют некоторую погрешность представления результатов из-за неизбежного округления и существования так называемого машинного нуля — наименьшего числа, которое воспринимается как нуль. В терминах системы Mathematica говорят о приближении числовых данных как об их аппроксимации, хотя в отечественной литературе под аппроксимацией чаще подразумевают описание некоторой зависимости между данными достаточно приближенной аналитической зависимостью.

Mathematica имеет две системные переменные, позволяющие вывести максимально и минимально возможные значения чисел, с которыми оперирует система:




Содержание  Назад  Вперед