Иллюстрированный самоучитель по Mathematica



              

Разложение функций в ряды Тейлора и Маклорена - часть 2


Следует отметить, что разложение в ряд использует особый формат вывода, частью которого и является член остаточной погрешности. На рис. 5.2 показано разложение в ряд Тейлора для нескольких функций, причем вывод дан в стандартной форме.

Рис. 5.2. Примеры представления функций рядами

Нетрудно заметить, что не все функции разлагаются в ряд Тейлора системой . Mathematica. Например, не имеют разложения логарифм и квадратный корень — они возвращаются в исходном виде. А разложение факториала представлено через гамма- и полигамма-функции.

Удаление члена с остаточной погрешностью ряда

Из-за особого формата результаты разложения в ряд нельзя явно использовать для расчетов (например, для построения графика функции по данным ее разложения в ряд). Для устранения остаточного члена и получения приемлемых для расчетов выражений можно использовать функции Collect и Normal. Ниже показаны примеры применения этих функций:

Series[Sin[x],{х,0,7}]

x-x3/6+x5/120 -x7/5040+0[Xl 8

Collect[%,x]

x-x3/6+x5/120 -x7/5040

Normal[Series[Sin[x*y],{х,0,3},{у,0,3}] ]

xy-х3 у3/6

f [х_, у ] =xy-х3 у3/6

xy-х3 у3/6

f[0.1,0.2]

0.0199987

В данном случае результат представлен в формате стандартного вывода. Его можно использовать для создания функций пользователя, например, путем переноса через буфер обмена в правую часть такой функции. Это и показано в конце приведенных выше примеров. Разумеется, можно задать функцию пользователя и напрямую:

F[x_, у_] = Normal [Series [Sin[x* у] , {х, 0, 3), {у, 0, 3}]

xy-х3 у3/6

F[0.1, 0.2]

0.0199987

В Mathematica 3/4 преобразование результатов разложения в ряд в стандартные расчетные выражения несколько упрощено. Это позволяет ограничиться описанными выше (но вовсе не единственными) приемами.

Графическая визуализация разложения в ряд

Погрешность разложения в ряд возрастает с ростом отклонения от узловой точки. При больших отклонениях даже качественное описание функции может резко нарушаться — например, монотонно возрастающая функция при вычислении по разложению в ряд может убывать или даже стремиться к бесконечности.


Содержание  Назад  Вперед