Иллюстрированный самоучитель по Mathematica



              

Векторный анализ —VectorAnalysis


Подпакет VectorAnalysis содержит множество функций, используемых при выполнении векторного анализа. Здесь надо иметь в виду, что речь идет не о векторах как представителях одномерных массивов, которые рассматривались ранее. В данном случае вектор — это направленный отрезок прямой в пространстве, заданном той или иной системой координат.

Системы координат и их преобразования

Заметная часть функций подпакета VectorAnalysis относится к заданию и преобразованию координат:

  • Coordinates [ ] — возвращает имена переменных текущей системы координат;
  • Coordinates [coordsys] — возвращает имена переменных системы координат coordsys;
  • SetCoordinates [coordsys] — устанавливает систему координат coordsys с текущими переменными;
  • Coordinates [coordsys, {vars}] — устанавливает систему координат coordsys с переменными, заданными списком {vars }.

Ниже даны названия систем координат и соответствующие им представления.

Наименование

Представление

Прямоугольные

Cartesian [х, у, z]

Цилиндрические

Cylindrical [r, theta, z]

Сферические

Spherical [r, theta, phi]

Параболические цилиндрические

ParabolicCylindrical [u, v, z]

Параболические

Paraboloidal [u, v, phi]

Эллиптические цилиндрические

EllipticCylindrical [u, v, z, a]

Вытянутые сфероидальные

ProlateSpheroidal [xi, eta, phi, a]

Сплющенные сфероидальные

OblateSpheroidal [xi, eta, phi, a]

Биполярные

Bipolar[u, v, z, a]

Бисферические

Bispherical [u, v, phi, a]

Тороидальные

Toroidal [u, v, phi, a]

Конические

Conical [lambda, mu, nu, a, b]

Конфокальные эллипсоидальные

ConfocalEllipsoidal [lambda, rnu, nu, a, b, c]

Конфокальные параболические

ConfocalParaboloidal [lambda, mu, nu, a, bj

Например, параболическую систему координат можно задать следующим образом:

SetCoordinates[Paraboloidal[x, у, z] ]

Paraboloidal [x, у, z]

{CoordinateSystem, Coordinates[]}

{Paraboloidal, {x, y, z}}




Содержание  Назад  Вперед