Иллюстрированный самоучитель по Mathematica


              

Функции для работы с полиномами


Для работы с полиномами имеется множество функций, по большей части достаточно очевидных для знакомого с математикой пользователя:

  • Decompose [poly, x] — выполняет разложение полинома, если это возможно, на более простые полиномиальные множители;
  • GroebnerBasis [ {polyl, poly2,...}, {xl, х2,...}]—возвращает список полиномов, которые образуют базис Гробнера для идеала, порожденного полиномами polyi;
  • Polynomial-Division [p, q, x] — возвращает список частного и остатка, полученных делением полиномов р и q от х;
  • PolynomialGCD [polyl, poly2,...] — возвращает наибольший общий делитель ряда полиномов polyl, poly2, ... С опцией Modulus->p функция возвращает наибольший общий делитель по модулю простого числа р;
  • PolynomialLCM[polyl, poly2,...] — возвращает наименьшее общее кратное полиномов polyl, poly2, ... С опцией Modulus->p функция возвращает наименьшее общее кратное по модулю простого числа р;
  • PolynomialMod [poly, m] — возвращает полином poly, приведенный по модулю m;
  • PolynomialMod [poly, {ml, m2,...}] — выполняет приведение по модулю всех mi;
  • PolynomialQ [expr, var] — возвращает значение True, если expr является полиномом от var, иначе возвращает False;
  • PolynomialQ [expr, {varl,...}] — проверяет, является ли expr полиномом от vari;
  • PolynomialQuotient [р, q, х] — возвращает частное от деления р и q как полиномов от х, игнорируя какой-либо остаток;
  • PolynomialRemainder [р, q, х] — возвращает остаток от деления р на q как полиномов от х;
  • Resultant [polyl, poly2, var] — вычисляет результант полиномов polyl и poly2 по переменной var. С опцией Modulus->p функция вычисляет результант по модулю простого числа р.

Итак, работа с этими функциями, по существу, сводит операции с таким сложным видом символьных данных, как многочлены, к типовым алгебраическим операциям над обычными символьными переменными. Следующие примеры поясняют работу с полиномами:

Р[х] := а*х^3 + b*х^2 + с*х + d

Q[x] := е*х^2 - f*x - 1

Null2

Collect[P[x] + Q[x], x]

-1 + d+ (c- f) x+ (b+e) x^ax3



Содержание  Назад  Вперед